PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
400 mm
The spring attached to the mass of m = 0. 5 kg sliding collar has
a stiffness of k = 0.21 kN/m and a free length of 150 mm. If the
speed of the collar in position A is 4 m/s to the right, determine
the total energy and the speed of the collar in position B, Neglecet
100 mm
friction.
200
The 750-mm-long spring is compressed by the plate P, which can slide freely on the 600-
mm-long vertical bars. The 55.6-kg block is given a velocity of v = 5 m/s when it is x = 2 m
above the plate. Determine how far the plate travels down when the block stops
momentarily after hitting it. Neglect the mass of the plate.
v = 5 m/s
P
k = 25 kN/m-
A
h = 2m
600 mm
The 50-kg crate is hoisted up the 30o incline by the pulley system and motor M. If the crate starts from rest and by constant acceleration attains a speed of 6.4 m/s after traveling 18.1 m along the plane, determine the power in kW that must be supplied to the motor at this instant. Neglect friction along the plane. The motor has an efficiency ϵ = 0.78.
Knowledge Booster
Similar questions
- The 4-kg box slides on the smooth surface and has a velocity of 15 m/s. If it strikes the smooth plate, which has a weight of 2 kg and is held in position by an unstretched spring of stiffness k = 600 N/m, determine the maximum compression imparted to the spring. Take e = 0.7 between the box and the plate.arrow_forwardThe 15-kg collar has a velocity of 10 m/s at A while travelling towards B along the smooth guide. The spring which is connected to the collar has an unstretched length of 125 mm and stiffness k= 57 N/m. Determine the collar's speed when it reaches point B, which is located just before the end of the curved portion of the rod. Take point B as the datum.arrow_forwardh 2. The roller coaster car has a mass of 700 kg, including its passenger. If it is released from rest at the top of the hill A, determine the minimum height h of the hill crest so that the car travels around both inside the loops without leaving the track. Neglect friction, the mass of the wheels, and the size of the car. Take pB = 7.5 m and pC=5 m. 15 m B 10 m Carrow_forward
- At the instant r = 2 m, the 5-kg disk is given a speed of v= 5 m/s, perpendicular to the elastic cord. Determine the speed of the disk at the instant r=1 m. The disk slides on the smooth horizontal plane. Neglect its size. The cord has an unstretched length of 0.5 m. K 20 N/marrow_forwardThe 0.8-Mg car travels over the hill having the shape of a parabola. If the driver maintains a constant speed of 9 m/s, determine both the resultant normal force and the resultant frictional force that all the wheels of the car exert on the road at the instant it reaches point A. Neglect the size of the car.arrow_forwardThe 56.28 kg crate is hoisted up the 0 = 27° incline by the pulley system and motor M. If the crate starts from rest and, by constant acceleration, attains a speed of 8.17 m/s after traveling 7.84 m along the plane, determine the supplied power to the motor if the crate has moved 8 m and the coefficient of kinetic friction between the plane and the crate is Hk = 0.3. Neglect friction along the plane. The motor has an efficiency of 0.691. Marrow_forward
- The small 0.5-kg block slides with a small amount of friction on the circular path of radius r = 3.1 m in the vertical plane. If the speed of the block is 5.6 m/s as it passes point A and 3.9 m/s as it passes point B, determine the normal force exerted on the block by the surface at each of these two locations. Assume 8 = 39º. Answers: NA = B NB = i i A N !Narrow_forwardThe 50-kg crate is hoisted up the 30° incline by the pulley system and motor M. If the crate starts from rest and by constant acceleration attains a speed of 7.3 m/s after traveling 11.4 m along the plane, determine the power in kW that must be supplied to the motor at this instant. Neglect friction along the plane. The motor has an efficiency € = 0.84. Note: Do not include the unit in your answer. M 30°arrow_forwardThe elevator E and its freight have a total mass of 400kg. Hoisting is provided by the motor M and the 150-kg block C. If the motor has an efficiency of ε =0.85, determine the power that must be supplied to themotor when the elevator is hoisted upwards at aconstant speed of VE = 4 m/s. Please show every single step of the process and the free body diagrams thanksarrow_forward
- The box having a weight of 40 N is moving to the right along a roughsurface. When the package is at point A, its speed is 5m/s. The spring ofstiffness k=200 N/m brings the box to rest. It is known that the frictionbetween the box and the surface is 0.3, determine the maximum force inthe spring. Neglect the mass of the end plate attached to the spring.arrow_forwardThe spring is not stretched or compressed when “s=0.8m" and the 11 kg block which is subjected to a force of 105 N has a speed of 5.5 m/s down the smooth plane. Using "THE PRINCIPLE OF WORK AND ENERGY", find the distance "s" when the block STOPS. k = 200 N/m 5 m/s F = 100 N 30°arrow_forwardThe block has a mass of 50 kg and rests on the surface of the cart having a mass of 75 kg. If the spring which is attached to the cart and not the block is compressed 0.2 m and the system is released from rest, determine the speed of the block with respect to the cart after the springg becomes undeformed. Neglect the mass of the wheels and the spring in the calculation. Also the neglect friction. Take k = 300N/m,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY