![EBK PRECALCULUS: MATHEMATICS FOR CALCUL](https://www.bartleby.com/isbn_cover_images/8220100466571/8220100466571_largeCoverImage.jpg)
Concept explainers
(a)
To find:the roots of the equation using middle term factorization.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 123E
The solution of the given equation
Explanation of Solution
Given:
Concept used:
The First it can solve the given equation through middle term factorization by taking common factor and if it doesn’t get factorize then use discriminant method to solve the given
Calculation:
First by solving the equation through middle term factorization
If it doesn’t get factorized then it can be solved from discriminant method to solve the given quadratic equation.
Where the equation is defined by
Where s =sum of the two roots and p= product of two roots
Let the two roots be
Sum of the roots =
Here in given solution
Here need to find 2 number whose sum is
Which is possible by
So, two numbers are
Since,
So,
Hence, the solution of the given equation
(b)
To find:the roots of the equation using middle term factorization or by quadratic formula.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 123E
The solution of
Explanation of Solution
Given:
Concept used:
The First it can solve the given equation through middle term factorization by taking common factor and if it doesn’t get factorize then use discriminant method to solve the given quadratic equation where
Calculation:
Here the equation is defined by
Where s =sum of the two roots and p= product of two roots
Let the two roots be
Sum of the roots =
Here in given solution
This is not possible since sum of the root and product of the root is not equal so it cannot be solved from middle term factorization method.
It can be solved from discriminant method:
Here
Hence the solution of
(c)
To prove:that the quadratic equation has two roots which when multiply give product of the root C and which when sum give sum of the root B.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 123E
It is true that two roots which when multiply give product of the root C and which when sum give sum of the root B.
Explanation of Solution
Given:
Concept used:
Using discriminant method to solve the given quadratic equation
where
Calculation:
Chapter 1 Solutions
EBK PRECALCULUS: MATHEMATICS FOR CALCUL
- Cancel Done RESET Suppose that R(x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R(x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (a) Find another zero of R(x). ☐ | | | | |│ | | | -1 བ ¢ Live Adjust Filters Croparrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (c) What is the maximum number of nonreal zeros that R (x) can have? ☐arrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (b) What is the maximum number of real zeros that R (x) can have? ☐arrow_forward
- i need help please dont use chat gptarrow_forward3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forward
- 2. Answer the following questions. (A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity Vx (VF) V(V •F) - V²F (B) [50%] Remark. You are confined to use the differential identities. Let u and v be scalar fields, and F be a vector field given by F = (Vu) x (Vv) (i) Show that F is solenoidal (or incompressible). (ii) Show that G = (uvv – vVu) is a vector potential for F.arrow_forwardA driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.arrow_forwardTopic 2 Evaluate S x dx, using u-substitution. Then find the integral using 1-x2 trigonometric substitution. Discuss the results! Topic 3 Explain what an elementary anti-derivative is. Then consider the following ex integrals: fed dx x 1 Sdx In x Joseph Liouville proved that the first integral does not have an elementary anti- derivative Use this fact to prove that the second integral does not have an elementary anti-derivative. (hint: use an appropriate u-substitution!)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)