
Concept explainers
Write the MATLAB code necessary to create the variables in (a) through (d) or calculate the vector computations in (e) through (q). If a calculation is not possible, explain why. You may assume that the variables created in parts (a) through (d) are available for the remaining computations in parts (e) through (q). For parts (e) through (q) when it is possible, determine the expected result of each computation by hand.
a. Save vector [3 –2 5] in va
b. Save vector
c. Save vector [9 –4 6 –5] in vc.
d. Save vector
e. Convert vd to a row vector and store in variable ve.
f. Place the sum of the elements in Va in the variable S1.
g. Place the product of the last three elements of vd in the variable P1.
h. Place the cosines of the elements of vb in the variable c1. Assume the values in vb are angles in radians.
i. Create a new 14-element row vector V19 that contains all of the elements of the four original
j. Create a two-element row vector v2 that contains the product of the first two elements of vc as the first element and the product of the last two elements of vc as the second element.
k. Create a two-element column vector v2A that contains the sum of the odd-numbered elements of vc as the first element and the sum of the even-numbered elements of vc as the second element.
l. Create a row vector ES1 that contains the element-wise sum of the corresponding values in vc and vd.
m. Create a row vector DS9 that contains the element-wise sum of the elements of vc with the square roots of the corresponding elements of vd.
n. Create a column vector EP1 that contains the element-wise product of the corresponding values in va and vb.
o. Create a row vector ES2 that contains the element-wise sum of the elements in vb with the last three elements in vd.
p. Create a variable s2 that contains the sum of the second elements from all four original vectors, Va, vb, vc, and vd.
q. Delete the third element of vd, leaving the resulting three-element vector in vd.

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
- a) Briefly explain what ratio control is. Give an example of a common chemical engineering situation in whichratio control would be useful and for that example state exactly how ratio control works (what would bemeasured, what is set, and how the controller logic works).b) Briefly explain what cascade control is. Give an example of a common chemical engineering situation inwhich cascade control would be useful and for that example state exactly how cascade control works (whatwould be measured, what is set, and how the controller logic works).arrow_forwardDetermine the reaction force acting on the beam AB, given F = 680 N. 5 4 4 m 3 3 A B 30° 3 m F (N)arrow_forwardThe frame in the figure is made of an HEA 300 profile (E = 210 GPa, material S355).a) Determine the support reactions at point A. (1p)b) Sketch the bending moment diagram caused by the loading. (1p)c) Using the principle of virtual work (unit load method), calculate the vertical displacement at point B using moment diagrams. Also take into account the compression of the column. (3p)arrow_forward
- 9 kN/m 6 kN/m 3 m 6 m Bestäm, med hjälp av friläggning och jämviktsberäkningar, tvärkrafts- och momentdiagram för balken i figuren. Extrempunkter ska anges med både läge och värde.arrow_forwardB C 3.0 E F G 40 kN [m] 3.0 3.0 3.0 Fackverket belastas med en punktlast i G enligt figuren. Bestäm normalkraften i stängerna BC, BF och EF.arrow_forwardL q=8 kN/m P= 12 kN En stång belastas av en punklast P vid sin ena ände samt av en jämnt utbredd last q längs hela sin längd. Stången har en tvärsnittsarea A = 150 mm² och är tillverkad av stål med elasticitetsmodul E-210 GPa. Stångens längd, i sitt obelastade tillstånd, är Z-3 m. a) Hur stor är den största normalspänning som uppstår i stången? b) Hur stor blir förlängningen av stången, orsakad av lasterna P och q?arrow_forward
- A turbocharged engine with a compression ratio of 8 is being designed using an air standard cycle. The ambient air is assumed to be 300K and 100 kPa. The temperature at the end of the compression in the cylinder is desired to be 1000K, assuming no combustion prior to reaching TDC. At the end of the cylinder expansion the temperature is also desired to be 1000K. If both the turbine and the compressor have mechanical efficiencies of 80%, what will be the pressure ratio of the compressor and what will be the turbine exhaust temperature?arrow_forwardQ6: A turbocharged engine with a compression ratio of 8 is being designed using an air standard cycle. The ambient air is assumed to be 300K and 100 kPa. The temperature at the end of the compression in the cylinder is desired to be 1000K, assuming no combustion prior to reaching TDC. At the end of the cylinder expansion the temperature is also desired to be 1000K. If both the turbine and the compressor have mechanical efficiencies of 80%, what will be the pressure ratio of the compressor and what will be the turbine exhaust temperature?arrow_forwardQ5: A 5.6 litre V8 engine with a compression ratio of 9.4:1 operates on an air-standard Otto cycle at 2800 RPM, with a volumetric efficiency of 90 % and a stoichiometric air-fuel ratio using gasoline. The exhaust flow undergoes a temperature drop of 44ºC as it passes through the turbine of the supercharger. Calculate (a) mass flow rate of exhaust gas and (b) power available to drive the turbocharger compressor.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





