Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.5, Problem 1.15E
To determine
The overall voltage gain of cascade amplifier.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The amplifier in the circuit below is driven by a signal generator v, with a small sine wave signal
vhose average value is zero. Assume the transistor has a value of B-100, and V-26 mV.
a. You need to design the circuit so that the de emitter current IE
of the emitter resistor RE to establish the desired de emitter current.
= 1 mA. Specify the value
b.
A de collector voltage of +5 volts is desired. Specify the value of the collector resistor Re
to establish the desired de collector voltage.
For this part assume that RL 5 K and the Early Effect needs to be considered. The
transistor has a VA 100 Volts. Draw the ac small signal equivalent circuit model of the
amplifier and determine its voltage gain.
91SV
C.
2.5k
MM
do
RE
-15 V
84
Vout
RL
Q1.
(a)
Consider the amplifier circuit in Figure Q1(a). Given the following:
RI = 100 k2
R2 = 56 kN
Rc =2 k2
Vcc = +8 V
Assume the transistor has B = 100 and VBE(on) = 0.7 V. You may neglect Early
effect and use VT = 26 mV.
(i)
Draw the DC equivalent circuit, then determine Iç and VCE.
Draw the AC equivalent circuit using re model. Based on this, determine
the parameters Av, Rin and Rout.
(ii)
Vcc
Rc
R1
R2
C3
Vout
C2
Ci
Vin
Figure Q1(a)
THE PAIR of transistors Q1 and Q2 in the figure have gains β1 = 200 and β2 = 75 respectively. Determine the value of the equivalent gain βeq for the equivalent transistor Qeq.
( NEED ONLY HANDWRITTEN SOLUTION PLEASE OTHERWISE DOWNVOTE).
Chapter 1 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 1.1 - Prob. 1.1ECh. 1.1 - Prob. 1.2ECh. 1.1 - Prob. 1.3ECh. 1.1 - Prob. 1.4ECh. 1.2 - Prob. 1.5ECh. 1.2 - Prob. 1.6ECh. 1.2 - Prob. 1.7ECh. 1.2 - Prob. 1.8ECh. 1.3 - Prob. 1.9ECh. 1.4 - Prob. 1.10E
Ch. 1.4 - Prob. 1.11ECh. 1.5 - Prob. 1.12ECh. 1.5 - Prob. 1.13ECh. 1.5 - Prob. 1.14ECh. 1.5 - Prob. 1.15ECh. 1.5 - Prob. 1.16ECh. 1.5 - Prob. 1.17ECh. 1.5 - Prob. 1.18ECh. 1.5 - Prob. 1.19ECh. 1.5 - Prob. 1.20ECh. 1.5 - Prob. 1.21ECh. 1.6 - Prob. 1.22ECh. 1.6 - Prob. D1.23ECh. 1.6 - Prob. D1.24ECh. 1 - Prob. 1.1PCh. 1 - Prob. 1.2PCh. 1 - Prob. 1.3PCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. D1.8PCh. 1 - Prob. D1.9PCh. 1 - Prob. 1.10PCh. 1 - Prob. D1.11PCh. 1 - Prob. D1.12PCh. 1 - Prob. D1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.15PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. D1.49PCh. 1 - Prob. D1.50PCh. 1 - Prob. D1.51PCh. 1 - Prob. D1.52PCh. 1 - Prob. 1.53PCh. 1 - Prob. 1.54PCh. 1 - Prob. 1.55PCh. 1 - Prob. 1.56PCh. 1 - Prob. D1.57PCh. 1 - Prob. 1.58PCh. 1 - Prob. D1.59PCh. 1 - Prob. D1.60PCh. 1 - Prob. D1.61PCh. 1 - Prob. D1.62PCh. 1 - Prob. 1.63PCh. 1 - Prob. 1.64PCh. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - Prob. 1.69PCh. 1 - Prob. D1.70PCh. 1 - Prob. 1.71PCh. 1 - Prob. 1.72PCh. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Prob. D1.75PCh. 1 - Prob. D1.76PCh. 1 - Prob. 1.77PCh. 1 - Prob. 1.78PCh. 1 - Prob. D1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider the following common emitter amplifier: Discuss the LIMITATIONS of this circuit in terms of linearity and in terms of impedance matching. I just need the constraints of the circuit, like for example the operating point of the transistor and more.In the images, the graphics are:With the number 1: input-output curveThen a simulation was performed and obtained:With number 2: input-output curveWith number 3: more detailed input-output curveWith number 4: input-output curvePlease I just need the limitations of the circuit based on these graphs.arrow_forwardExercise 1:-arrow_forward1. For the circuit in Figure 1: a) Calculate the input and output power if the input signal results in a base current of 5 mA rms. b) Calculate the input power dissipated by the circuit if RB is changed to 1.5 kN. c) What maximum output power can be delivered by the circuit if RB is changed to 1.5 kN? d) If the circuit is biased at its center voltage and center collector operating point, what is the input power for a maximum output power of 1.5 W? +Vcc (18 V) RC -16Ω RB 1.2 k2 B - 40 100 µFarrow_forward
- mosfet operating in saturationarrow_forwardThe DC Current Gain of a Transistor is Select one: a. Ratio of Collector Current to Base Current b. Ratio of Base Current to Collector Current c. Ratio of Emitter Current to Collector Current d. Ratio of Base Current to Emitter Currentarrow_forwardA transistor amplifier which uses a npn BJT and various passive components is shown in figure Q1. A table of components values is shown in Table Q1. For this amplifier: a) Calculate the following dc voltages and currents; VB, VE, le and le. b) Draw a r parameter ac small-signal model. The model should be correctly labelled with transistor voltages and all small-signal parameters. Detail assumptions and limitations. c) Calculate the small-signal input resistance Rin, output resistance Rout and output voltage Vout. Detail assumptions and limitations. d) Calculate the small-signal voltage and current gain Av and A. Also calculate the output voltage. Vcc R3 R. R: Figure Q1 R3 = 2 kQ Vin = 10 mV Table of Component values and Transistor Parameters R2 = 10 kQ VT = 24 mV R1 = 40 kQ R4 = 1 kQ VBE = 0.7 V B = 200 %3D Vcc = 10 V C=2mFarrow_forward
- 1. For the circuit in Figure 1: a) Calculate the input and output power if the input signal results in a base current of 6 mA. b) Calculate the input power dissipated by the circuit if Re is changed to 2kn. c) What maximum output power can be delivered by the circuit if Rg is changed to 2 ko? d) If the circuit is biased at its center voltage and center collector operating point, what is the input power for a maximum output power of 2W? 20V Re = 16 2 1.2 ks2 B- 40 100 µF Figure 1arrow_forward1. For the circuit in Figure 1: a) Calculate the input and output power if the input signal results in a base current of 5 mA rms. b) Calculate the input power dissipated by the circuit if Rg is changed to 1.5 kN. c) What maximum output power can be delivered by the circuit if RB is changed to 1.5 kN? d) If the circuit is biased at its center voltage and center collector operating point, what is the input power for a maximum output power of 1.5 W? +Vcc (18 V) Rc = 16 2 RB 1.2 k2 V. B - 40 100 µF Figure 1arrow_forwardFor the MOSFET shown in Figure Q2d, VGs (off) = -6V, IDss = 10.5 mA and Vps = 11V. Determine, d) i) What is the type of MOSFET and the amplifier configuration? ii) What is the value of the drain resistance, Rp? 15V VDD RD Q1 LRG 9MO Figure Q2darrow_forward
- Figure 1(a) shows a series fed class A amplifier circuit. In order to achieve the maximum efficiency, the Q point must be located at the center of the DC load line as shown in Figure 1(b). This generates the maximum output current swing of Icmax (p – p) RC and the maximum output voltage swing is VCEmax(p – p) = Vcc Assume that the maximum input de power is (1 Vcc Pimax(dc) = Vcc!cQ(max)=Vcc \2° Rc. 2Rc Find the maximum efficiency, 7 of this circuit.arrow_forward4. A Darlington transistor is essentially an array of two transistors connected as shown below. Assume both transistors follow our simple model with a current gain of B=100. Determine the maximum value of R2 that will just saturate the transistors, and pass full current through the load resistance R1. v2 V2 R2 PULSE (0 5 0) Q2 NPN R1 10 Q1 NPN V1 24arrow_forward........ (Figure-1) R. RB= 380kN,Rc= 1kN B = 100, VBB = Vcc=12V RB ww Vec CC ......... I, V CE СЕ V ВЕ BB Q-1-b) Describe briefly the input / output characteristics and application of Common Emitter BJT Configurationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,