The center of oscillation of a physical pendulum has this interesting property: It an impulse (assumed horizontal and in the plane of oscillation) acts at the center of oscillation, no oscillations are felt at the point of support. Baseball players (and players of many other sports) know that unless the ball hits the bat at this point (called the “sweet spot” by athletes), the oscillations due to the impact will sting their hands. To prove this property, let the stick in Fig. 15-I3 a simulate a baseball bat. Suppose that a horizontal force F → (due to impact with the ball) acts toward the right at P , the center of oscillation. The batter is assumed to hold the bat at O , the pivot point of the stick, (a) What acceleration does the point O undergo as a result of F → ? (b) What angular acceleration is produced by F → about the center of mass of the stick? (c) As a result of the angular acceleration in (b), what linear acceleration does point O undergo? (d) Considering the magnitudes and directions of the accelerations in (a) and (c), convince yourself that P is indeed the “sweet spot.”
The center of oscillation of a physical pendulum has this interesting property: It an impulse (assumed horizontal and in the plane of oscillation) acts at the center of oscillation, no oscillations are felt at the point of support. Baseball players (and players of many other sports) know that unless the ball hits the bat at this point (called the “sweet spot” by athletes), the oscillations due to the impact will sting their hands. To prove this property, let the stick in Fig. 15-I3 a simulate a baseball bat. Suppose that a horizontal force F → (due to impact with the ball) acts toward the right at P , the center of oscillation. The batter is assumed to hold the bat at O , the pivot point of the stick, (a) What acceleration does the point O undergo as a result of F → ? (b) What angular acceleration is produced by F → about the center of mass of the stick? (c) As a result of the angular acceleration in (b), what linear acceleration does point O undergo? (d) Considering the magnitudes and directions of the accelerations in (a) and (c), convince yourself that P is indeed the “sweet spot.”
The center of oscillation of a physical pendulum has this interesting property: It an impulse (assumed horizontal and in the plane of oscillation) acts at the center of oscillation, no oscillations are felt at the point of support. Baseball players (and players of many other sports) know that unless the ball hits the bat at this point (called the “sweet spot” by athletes), the oscillations due to the impact will sting their hands. To prove this property, let the stick in Fig. 15-I3a simulate a baseball bat. Suppose that a horizontal force
F
→
(due to impact with the ball) acts toward the right at P, the center of oscillation. The batter is assumed to hold the bat at O, the pivot point of the stick, (a) What acceleration does the point O undergo as a result of
F
→
? (b) What angular acceleration is produced by
F
→
about the center of mass of the stick? (c) As a result of the angular acceleration in (b), what linear acceleration does point O undergo? (d) Considering the magnitudes and directions of the accelerations in (a) and (c), convince yourself that P is indeed the “sweet spot.”
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.)
5.0 με
4.0 με
2.0 με
+
1.0 m
1.0 m
-40 με
2.0 μC
What is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µC
An ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.
Chapter 15 Solutions
Fundamentals of Physics Extended 10e Binder Ready Version + WileyPLUS Registration Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.