![Contemporary Mathematics For Business & Consumers, Loose-leaf Version](https://www.bartleby.com/isbn_cover_images/9781305867185/9781305867185_largeCoverImage.gif)
a. Use the following financial information to construct a 2013 income statement with vertical analysis for Jazzline Jewelers: gross sales, $1,243,000; sales returns and allowances, $76,540; sales discounts. $21,300; merchandise inventory. Jan. 1, 2013, $654,410; merchandise inventory. Dec. 31, 2013, $413,200; net purchases. $318,000; freight in. $3,450; salaries, $92,350; rent, $83,100; depreciation. $87,700; utilities. $21,350; advertising. $130,440; insurance. $7,920; miscellaneous expenses. $105,900; and income tax. $18,580.
Jazzline Jewelers
Income Statement
For the Year Ended December 31,2013
b. The following data represent Jazzline's operating results for 2014. Prepare a comparative income statement with horizontal analysis for 2013 and 2014: gross sales. $1,286,500; sales returns and allowances. $78,950; sales discounts. $18,700; merchandise inventory. Jan. 1, 2014, $687,300; merchandise inventory. Dec. 31, 2014, $401,210; net purchases. $325,400; freight in. $3,980; salaries. $99,340; rent, $85,600; depreciation. $81,200; utilities. $21,340; advertising. $124,390; insurance. $8,700; miscellaneous expenses. $101,230; and income tax. $12,650.
Jazzline Jewelers
Comparative Income Statement
For the Years Ended December 31, 2013 and 2014
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 15 Solutions
Contemporary Mathematics For Business & Consumers, Loose-leaf Version
- Find the distance from the point (-9, -3, 0) to the line ä(t) = (−4, 1, −1)t + (0, 1, −3) .arrow_forward1 Find a vector parallel to the line defined by the parametric equations (x(t) = -2t y(t) == 1- 9t z(t) = -1-t Additionally, find a point on the line.arrow_forwardFind the (perpendicular) distance from the line given by the parametric equations (x(t) = 5+9t y(t) = 7t = 2-9t z(t) to the point (-1, 1, −3).arrow_forward
- Let ä(t) = (3,-2,-5)t + (7,−1, 2) and (u) = (5,0, 3)u + (−3,−9,3). Find the acute angle (in degrees) between the lines:arrow_forwardNo chatgpt pls will upvotearrow_forwardA tank initially contains 50 gal of pure water. Brine containing 3 lb of salt per gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus, the tank is empty after exactly 50 min. (a) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?arrow_forward
- Draw a picture of a normal distribution with mean 70 and standard deviation 5.arrow_forwardWhat do you guess are the standard deviations of the two distributions in the previous example problem?arrow_forward1 What is the area of triangle ABC? 12 60° 60° A D B A 6√√3 square units B 18√3 square units 36√3 square units D 72√3 square unitsarrow_forward
- Each answer must be justified and all your work should appear. You will be marked on the quality of your explanations. You can discuss the problems with classmates, but you should write your solutions sepa- rately (meaning that you cannot copy the same solution from a joint blackboard, for exam- ple). Your work should be submitted on Moodle, before February 7 at 5 pm. 1. True or false: (a) if E is a subspace of V, then dim(E) + dim(E) = dim(V) (b) Let {i, n} be a basis of the vector space V, where v₁,..., Un are all eigen- vectors for both the matrix A and the matrix B. Then, any eigenvector of A is an eigenvector of B. Justify. 2. Apply Gram-Schmidt orthogonalization to the system of vectors {(1,2,-2), (1, −1, 4), (2, 1, 1)}. 3. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal projection onto the orthogonal complement E. (a) The combinations of projections P+Q and PQ correspond to well-known oper- ators. What are they? Justify your answer. (b) Show…arrow_forwardpleasd dont use chat gptarrow_forward1. True or false: (a) if E is a subspace of V, then dim(E) + dim(E+) = dim(V) (b) Let {i, n} be a basis of the vector space V, where vi,..., are all eigen- vectors for both the matrix A and the matrix B. Then, any eigenvector of A is an eigenvector of B. Justify. 2. Apply Gram-Schmidt orthogonalization to the system of vectors {(1, 2, -2), (1, −1, 4), (2, 1, 1)}. 3. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal projection onto the orthogonal complement E. (a) The combinations of projections P+Q and PQ correspond to well-known oper- ators. What are they? Justify your answer. (b) Show that P - Q is its own inverse. 4. Show that the Frobenius product on n x n-matrices, (A, B) = = Tr(B*A), is an inner product, where B* denotes the Hermitian adjoint of B. 5. Show that if A and B are two n x n-matrices for which {1,..., n} is a basis of eigen- vectors (for both A and B), then AB = BA. Remark: It is also true that if AB = BA, then there exists a common…arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259676512/9781259676512_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134392790/9780134392790_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168024/9781938168024_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134683713/9780134683713_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337694193/9781337694193_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259985607/9781259985607_smallCoverImage.gif)