PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
The spring is not stretched or compressed when “s=0.8m" and the 11
kg block which is subjected to a force of 105 N has a speed of 5.5 m/s
down the smooth plane.
Using "THE PRINCIPLE OF WORK AND ENERGY", find the distance "s"
when the block STOPS.
k = 200 N/m
5 m/s
F = 100 N
30°
The 15-kg collar has a velocity of 10 m/s at A while travelling towards B along the smooth guide. The spring which is connected to
the collar has an unstretched length of 125 mm and stiffness k= 57 N/m. Determine the collar's speed when it reaches point B,
which is located just before the end of the curved portion of the rod. Take point B as the datum.
The 5-lb collar slides on the smooth rod, so that when
it is at 4 it has a speed of 10 ft/s. If the spring to
which it is attached has an unstretched length of 3 ft.
and a stiffness of k = 10 lb/ft, determine the normal
force on the collar and the acceleration of the collar at
this instant.
Solution:
2 ft
10 ft/s
Knowledge Booster
Similar questions
- At the instant r = 2 m, the 5-kg disk is given a speed of v= 5 m/s, perpendicular to the elastic cord. Determine the speed of the disk at the instant r=1 m. The disk slides on the smooth horizontal plane. Neglect its size. The cord has an unstretched length of 0.5 m. K 20 N/marrow_forwardSolve it correctly please. Iarrow_forward400 mm The spring attached to the mass of m = 0. 5 kg sliding collar has a stiffness of k = 0.21 kN/m and a free length of 150 mm. If the speed of the collar in position A is 4 m/s to the right, determine the total energy and the speed of the collar in position B, Neglecet 100 mm friction. 200arrow_forward
- The steel ingot has a mass of 1940 kg. It travels along the conveyor at a speed v= 0,2 m/s when it collides with the "nested" spring assembly. If the stiffness of the outer spring is Ka= 5 kN/m, determine the required stiffness Kb of the inner spring so that the motion of the ingot is stopped at the moment the front, C, of the ingot is 0.3 m from the wall. (Answer in kN/m) 0.5 m -0.45 m kB k Barrow_forwardThe 4-lb collar C fits closely the smooth shaft. The spring in unstretched when s=0 and its stiffness is 6 lb/ft. AT s=0 ft, the collar is given a velocity of 19ft.s-1. The height is 0.6-ft. determine the position of the collar when its velocity is 0 ft.s-1arrow_forwardThe small 0.5-kg block slides with a small amount of friction on the circular path of radius r = 3.1 m in the vertical plane. If the speed of the block is 5.6 m/s as it passes point A and 3.9 m/s as it passes point B, determine the normal force exerted on the block by the surface at each of these two locations. Assume 8 = 39º. Answers: NA = B NB = i i A N !Narrow_forward
- The collar has a mass of 28-kg and slides along the smooth rod. Two springs are attached to it and the ends of the rod as shown. S kA kB: 12 0.25 m Each spring has an uncompressed length of I1=2-m and l2=3-m and stiffnesses k1=51-N/m and k2=176-N/m respectively. Determine the velocity that must be subjected to the collar to generate a compression of 0.7 marrow_forwardThe weight of the spring held follower AB is 0.367 kg and moves back and forth as its end rolls on the contoured surface of the cam, where r = 0.2 ft and z = (0.1sin20) ft. If the cam is rotating at a constant rate of 6 rad/s, determine the force, in lb, at the end A of the follower where 0 = 45°. In this position, the spring is compressed 0.4 ft. Neglect friction at the bearing C. Round your answer to 3 decimal places. 6 = 6 rad/s 0.2 ftX z = 0.1 sin 20 Z A k = 12 lb/ft с Barrow_forwardThe 5-lb collar C fits loosely on the smooth shaft. If the spring is unstretched when and the collar is given a velocity of 15 ft/s, determine the velocity of the collar when s = 1.5 ft. 1 ft 15 ft/s ww k = 4 lb/ftarrow_forward
- The weight of the spring held follower AB is 0.381 kg and moves back and forth as its end rolls on the contoured surface of the cam, where r = 0.2 ft and z = (0.1sin20) ft. If the cam is rotating at a constant rate of 6 rad/s, determine the force, in Ib, at the end A of the follower where e = 45°. In this position, the spring is compressed 0.4 ft. Neglect friction at the bearing C. Round your answer to 3 decimal places. z = 0.1 sin 20 0.2 ft e = 6 rad/s A k = 12 lb/ftarrow_forwardThe collar has a mass of 20 kg and is supported on the smooth rod. The attached springs are undeformed when d=0.5m. Determine the speed of the collar after the applied force F=100N causes it to be displaced so that d=0.3m. When d=0.5m the collar is at rest.arrow_forwardPlease help mearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY