
Concept explainers
(a)
To calculate: The period and frequency of the waves on string.
(a)

Answer to Problem 102P
The period
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
Theperiod and frequency of the waves on string can be calculated as:
Where,
Calculation:
The frequency of the waves on the string is the similar as that of frequency of the tuning fork and their period is the reciprocal of the frequency.
The frequency of the wave given is:
The period of the wave on the wire is the reciprocal of their frequency:
Conclusion:
Thus, the period
(b)
To calculate: The speed of the wave.
(b)

Answer to Problem 102P
The speed of the wave
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
For wave speed formula used is:
Where,
Calculation:
By using the tension and the linear density, wave speed can be calculated.
Relate the speed of the waves to the tension in string and linear density:
Conclusion:
Thus, the speed of the wave
(c)
To calculate: The wavelength and wave number.
(c)

Answer to Problem 102P
The wavelength
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
Where,
Sound’s speed:
Frequency of wave:
The wavelength:
Calculation:
By using the frequency and the speed of the waves and the wave number The wavelength can be determined.
Relate the wavelength and wave no to the speed and frequency of the wave:
Where,
After substituting the values,
Therefore,
Now, evaluate the wave number using wave length:
Hence,
Conclusion:
Thus, the wavelength
(d)
To calculate: Suitable wave function for the wave on the string.
(d)

Answer to Problem 102P
The suitable wave function is
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
For wave speed formula used is:
Where,
Calculation:
The general form of the wave function for waves on a string is
So, with the help of
Initially, find out the angular frequency of the waves:
Now, put
Conclusion:
Thus, the suitable wave function is
(e)
To calculate: max speed and acceleration point on the string.
(e)

Answer to Problem 102P
The max speed
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
For max speed formula used is:
Where,
Calculation:
The max speed and acceleration ofa point on the string can be determined from the angular frequency and amplitude ofthe waves.
Relate the max speed of apoint on the string to the amplitude of the waves and tuning fork’s the angular frequency:
Now, expression for the max acceleration of string point in terms of the amplitude and angular frequency of the tuning fork is:
Put the values to get max acceleration:
Conclusion:
Thus, the max speed
(f)
To calculate: minimum average rate of energy supplied to fork.
(f)

Answer to Problem 102P
The minimum average rate of energy
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension:
Formula used:
For minimum average rate of energyformula used is:
Where,
Calculation:
The expression for the minimum average power essential to keep the tuning fork oscillating at steady amplitude in terms of linear density of string, the amplitude of its vibrations and wave speed:
Where,
Now, substitute the values in the equation:
Conclusion:
Thus, the minimum average rate of energy
Want to see more full solutions like this?
Chapter 15 Solutions
Physics for Scientists and Engineers, Vol. 1
- Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forwardAt a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?arrow_forward
- A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forwardA point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.60 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Find the direction of this electric field.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod? Express your answer in terms of λ, r, and ϵ0, the permittivity of free space. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?arrow_forward
- A very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?arrow_forwardTwo small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?arrow_forwardA conducting spherical shell with inner radius aa and outer radius bb has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r<a. Express your answer in terms of some or all of the variables Q, a, b, and appropriate constants. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region a<r<b. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region r>b. What is the surface charge density on the inner surface of the conducting shell? What is the surface charge density on the outer surface of the conducting shell?arrow_forward
- A small sphere with a mass of 3.00×10−3 g and carrying a charge of 4.80×10−8 C hangs from a thread near a very large, charged insulating sheet, as shown in the figure (Figure 1). The charge density on the sheet is −2.20×10−9 C/m2 . Find the angle of the thread.arrow_forwardA small conducting spherical shell with inner radius aa and outer radius bb is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. Calculate the magnitude of the electric field in terms of q and the distance rr from the common center of the two shells for r<a. Calculate the magnitude of the electric field for a<r<b. Calculate the magnitude of the electric field for b<r<c.arrow_forwardA cube has sides of length L = 0.800 m . It is placed with one corner at the origin as shown in the figure. The electric field is not uniform but is given by E→=αxi^+βzk^, where α=−3.90 and β= 7.10. What is the sum of the flux through the surface S5 and S6? What is the sum of the flux through the surface S2 and S4? Find the total electric charge inside the cube.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





