a)
The volume flow rate of air into the cooling tower.
a)

Answer to Problem 110P
The volume flow rate of air into the cooling tower is
Explanation of Solution
Apply the dry air mass balance on the cooling tower.
Here, mass flow rate of air at inlet and outlet is
Apply the water mass balance on the cooling tower.
Here, mass flow rate of water at state 3 and 4 is
Apply the energy balance on the cooling tower.
Write the expression to obtain the volume flow rate of air into the cooling tower
Write the expression to obtain the vapor pressure at inlet conditions
Here, saturation pressure of water at
Write the expression to obtain the atmospheric pressure of an ideal gas mixture
Here, dry air partial pressure at state 1 is
Write the expression to obtain the specific volume of duct
Here, inlet temperature is
Write the expression to obtain the specific humidity
Here, total pressure at state 1 is
Write the expression to obtain the enthalpy at state 1
Here, specific heat of air is
Write the expression to obtain the vapor pressure at second inlet conditions
Here, saturation pressure of water at
Write the expression to obtain the specific humidity
Here, total pressure at state 2 is
Write the expression to obtain the enthalpy at state 2
Here, initial condition of enthalpy at saturation vapor at state 2 is
Conclusion:
Refer Table A-4, “Saturated water – Temperature table”, obtain the properties of water at a temperature of
Substitute 2.3392 kPa for
Rewrite Equation (V) and substitute 96 kPa for
Convert the unit of
Refer Table A-2, “Ideal gas specific heats of various common gases”, obtain the value of
Substitute
Substitute 1.637 kPa for
Substitute
Refer Table A-4, “Saturated water – Temperature table”, obtain the properties of water at a temperature of
Substitute 5.6291 kPa for
Substitute 5.6291 kPa for
Substitute
Refer Table A-4, “Saturated water – Temperature table”, obtain the value of enthalpy at saturation liquid
Refer Table A-4, “Saturated water – Temperature table”, obtain the value of enthalpy at saturation liquid
Substitute
Substitute
Thus, the volume flow rate of air into the cooling tower is
b)
The mass flow rate of required makeup water.
b)

Answer to Problem 110P
The mass flow rate of required makeup water is
Explanation of Solution
Write the expression to obtain the mass flow rate of required makeup water
Conclusion:
Substitute
Thus, the mass flow rate of required makeup water is
Want to see more full solutions like this?
Chapter 14 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
- This is an old exam practice question. The answer is Pmax = 218.8 kN normal stress governs but why?arrow_forwardMoist air initially at T₁ = 140°C, p₁ = 4 bar, and p₁ = 50% is contained in a 2.0-m³ closed, rigid tank. The tank contents are cooled to T₂ 35°C. Step 1 Determine the temperature at which condensation begins, in °C.arrow_forwardAir at T₁ = 24°C, p₁ = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2=7°C, p₂ = 1 bar. A single mixed stream exits at T3-17°C, p3=1 bar. Neglect kinetic and potential energy effectsarrow_forward
- Hand calculation of cooling loadarrow_forwardAn HEV has a 24kW battery. How many miles can it go on electricity alone at 40 mph on a flat straight road with no headwind? Assume the rolling resistance factor is 0.018 and the Coefficient of Drag (aerodynamic) is 0.29 the frontal area is 2.25m^2 and the vehicle weighs 1618 kg.arrow_forwardAs shown in the figure below, moist air at T₁ = 36°C, 1 bar, and 35% relative humidity enters a heat exchanger operating at steady state with a volumetric flow rate of 10 m³/min and is cooled at constant pressure to 22°C. Ignoring kinetic and potential energy effects, determine: (a) the dew point temperature at the inlet, in °C. (b) the mass flow rate of moist air at the exit, in kg/min. (c) the relative humidity at the exit. (d) the rate of heat transfer from the moist air stream, in kW. (AV)1, T1 P₁ = 1 bar 11 = 35% 120 T₂=22°C P2 = 1 bararrow_forward
- The inside temperature of a wall in a dwelling is 19°C. If the air in the room is at 21°C, what is the maximum relative humidity, in percent, the air can have before condensation occurs on the wall?arrow_forwardThe inside temperature of a wall in a dwelling is 19°C. If the air in the room is at 21°C, what is the maximum relative humidity, in percent, the air can have before condensation occurs on the wall?arrow_forward###arrow_forward
- Find the closed loop transfer function and then plot the step response for diFerentvalues of K in MATLAB. Show step response plot for different values of K. Auto Controls Show solution for transform function and provide matlab code (use k(i) for for loop NO COPIED SOLUTIONSarrow_forwardThis is an old practice exam. The answer is Ta-a = 4.615 MPa max = 14.20 MPa Su = 31.24 MPa Sus = 10.15 MPa but why?arrow_forwardThis is an old practice exam. The answer is dmin = 42.33 mm but how?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





