(a) Two surfaces are called orthogonal at a point of intersection if their normal lines are perpendicular at that point. Show that surfaces with equations F(x, y, z) = 0 and G(x, y, z) = 0 are orthogonal at a point P where ∇F ≠ 0 and ∇G ≠ 0 if and only if FxGx + FyGy + FzGz = 0 atP(b) Use part (a) to show that the surfaces z2 = x2 + y2 and x2 + y2 + z2 = r2 are orthogonal at every point of intersection. Can you see why this is true without using calculus?
(a) Two surfaces are called orthogonal at a point of intersection if their normal lines are perpendicular at that point. Show that surfaces with equations F(x, y, z) = 0 and G(x, y, z) = 0 are orthogonal at a point P where ∇F ≠ 0 and ∇G ≠ 0 if and only if FxGx + FyGy + FzGz = 0 atP(b) Use part (a) to show that the surfaces z2 = x2 + y2 and x2 + y2 + z2 = r2 are orthogonal at every point of intersection. Can you see why this is true without using calculus?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
(a) Two surfaces are called orthogonal at a point of intersection if their normal lines are perpendicular at that point. Show that surfaces with equations F(x, y, z) = 0 and G(x, y, z) = 0 are orthogonal at a point P where ∇F ≠ 0 and ∇G ≠ 0 if and only if FxGx + FyGy + FzGz = 0 atP
(b) Use part (a) to show that the surfaces z2 = x2 + y2 and x2 + y2 + z2 = r2 are orthogonal at every point of intersection. Can you see why this is true without using calculus?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,