Moments of Inertia In Exercises 57 and 58, verify the moments of inertia for the solid of uniform density. Use a computer algebra system to evaluate the triple integrals. I x = 1 12 m ( a 2 + b 2 ) I y = 1 12 m ( b 2 + c 2 ) I z = 1 12 m ( a 2 + c 2 )
Moments of Inertia In Exercises 57 and 58, verify the moments of inertia for the solid of uniform density. Use a computer algebra system to evaluate the triple integrals. I x = 1 12 m ( a 2 + b 2 ) I y = 1 12 m ( b 2 + c 2 ) I z = 1 12 m ( a 2 + c 2 )
Solution Summary: The author explains the formula for determining the total mass of the solid by following the steps below in computer algebra.
Moments of Inertia In Exercises 57 and 58, verify the moments of inertia for the solid of uniform density. Use a computer algebra system to evaluate the triple integrals.
I
x
=
1
12
m
(
a
2
+
b
2
)
I
y
=
1
12
m
(
b
2
+
c
2
)
I
z
=
1
12
m
(
a
2
+
c
2
)
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
Use Euler's method to numerically integrate
dy
dx
-2x+12x² - 20x +8.5
from x=0 to x=4 with a step size of 0.5. The initial condition at x=0 is y=1. Recall
that the exact solution is given by y = -0.5x+4x³- 10x² + 8.5x+1
Find an equation of the line tangent to the graph of f(x) = (5x-9)(x+4) at (2,6).
Find the point on the graph of the given function at which the slope of the tangent line is the given slope.
2
f(x)=8x²+4x-7; slope of the tangent line = -3
Chapter 14 Solutions
Student Solutions Manual For Larson/edwards? Multivariable Calculus, 11th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY