Three-dimensional motion Consider the motion of the following objects. Assume the x-axis points east, the y-axis points north, the positive z-axis is vertical and opposite g, the ground is horizontal, and only the gravitational force acts on the object unless otherwise stated. a. Find the velocity and position vectors , for t ≥ 0. b. Make a sketch of the trajectory. c. Determine the time of flight and range of the object. d. Determine the maximum height of the object. 48. A golf ball is hit east down a fairway with an initial velocity of 〈50, 0, 30〉 m/s. A crosswind blowing to the south produces an acceleration of the ball of −0.8 m/s 2 .
Three-dimensional motion Consider the motion of the following objects. Assume the x-axis points east, the y-axis points north, the positive z-axis is vertical and opposite g, the ground is horizontal, and only the gravitational force acts on the object unless otherwise stated. a. Find the velocity and position vectors , for t ≥ 0. b. Make a sketch of the trajectory. c. Determine the time of flight and range of the object. d. Determine the maximum height of the object. 48. A golf ball is hit east down a fairway with an initial velocity of 〈50, 0, 30〉 m/s. A crosswind blowing to the south produces an acceleration of the ball of −0.8 m/s 2 .
Three-dimensional motionConsider the motion of the following objects. Assume the x-axis points east, the y-axis points north, the positive z-axis is vertical and opposite g, the ground is horizontal, and only the gravitational force acts on the object unless otherwise stated.
a.Find the velocity and position vectors, for t ≥ 0.
b.Make a sketch of the trajectory.
c.Determine the time of flight and range of the object.
d.Determine the maximum height of the object.
48. A golf ball is hit east down a fairway with an initial velocity of 〈50, 0, 30〉 m/s. A crosswind blowing to the south produces an acceleration of the ball of −0.8 m/s2.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
a
->
f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem)
Muslim_maths
Use Green's Theorem to evaluate F. dr, where
F = (√+4y, 2x + √√)
and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to
(0,0).
Evaluate
F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line
π 1
1
segment starting at the point (8,
'
and ending at the point (3,
2
3'6
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.