Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
9th Edition
ISBN: 9781285462530
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 2CYU
The rate constant, k, at 25 °C is 0.27/h for the reaction
Pt(NH3)2Cl2(aq) + H2O(ℓ) → [Pt(NH3)2(H2O)Cl]+(aq) + Cl‒(aq)
and the rate equation is
Reaction rate = k[Pt(NH3)2C12]
Calculate the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The reaction rate for the decomposition of N2O5 to form NO2 and O2 was studied as a function of temperature. The first order reaction rate constants were found to be:
T (K) k(s^-1)
273 7.9 x 10^-7
298 3.5 x 10^-5
308 1.4 x 10^-4
318 5.0 x 10^-4
328 1.5 x 10^-3
338 4.9 x 10^-3
What is the Ea for this reaction in kJ/mol?
Use Excel to plot the pertinent data and use linear regression to calculate the slope of the line connecting your data.
Round your answer to 2 decimal places.
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy
1 −1
E = 16.0 kJ/mol. If the rate constant of this reaction is 9.1 x 107 M¹s at 136.0 °C, what will the rate constant be at
73.0 °C?
Round your answer to 2 significant digits.
1
k = | M²¹
· S
1
☐
x10
?
olo
Ar
1 Rate constants for the first-order decomposition of acetonedicarboxylic acid
CO(CH2COOH)2(aq) → CO(CH3)2(aq) + 2 CO2(g)
acetonedicarboxylic acidacetone
are k = 4.75 ×10–4 s–1 at 293 K and k = 1.63 ×10–3 at 303 K. What is the activation energy, Ea, for this reaction?
Select one:
a.
71KJ/mol
b.
81KJ/mol
c.
51KJ/mol
d.
91kJ/mol
Chapter 14 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
Ch. 14.1 - Sucrose decomposes to fructose and glucose in acid...Ch. 14.1 - What are the relative rates of appearance or...Ch. 14.1 - Prob. 1RCCh. 14.1 - 2. Use the graph provided in Example 14.1 to...Ch. 14.2 - 1. Which of the following will not usually...Ch. 14.3 - The initial rate ( [NO]/ t] of the reaction of...Ch. 14.3 - The rate constant, k, at 25 C is 0.27/h for the...Ch. 14.3 - The reaction NO(g) + 1/2 Cl2(g) NOCl(g) is...Ch. 14.4 - Sucrose, a sugar, decomposes in acid solution to...Ch. 14.4 - Gaseous azomethane (CH3N2CH3) decomposes to ethane...
Ch. 14.4 - Prob. 3CYUCh. 14.4 - The catalyzed decomposition of hydrogen peroxide...Ch. 14.4 - Americium is used in smoke detectors and in...Ch. 14.4 - The decomposition of N2O5 is a first-order...Ch. 14.4 - Which of the following will confirm that the...Ch. 14.4 - 3. The equation for the decomposition of NO2(g) at...Ch. 14.5 - Prob. 1CYUCh. 14.5 - The colorless gas N2O4, decomposes to the brown...Ch. 14.5 - Prob. 1RCCh. 14.5 - Prob. 2RCCh. 14.6 - Nitrogen monoxide is reduced by hydrogen to give...Ch. 14.6 - Prob. 2CYUCh. 14.6 - One possible mechanism for the decomposition of...Ch. 14.6 - The rate equation for a reaction A + B C was...Ch. 14.6 - A reaction is believed to occur by the following...Ch. 14.6 - Prob. 1QCh. 14.6 - Prob. 2QCh. 14.6 - Prob. 3QCh. 14.6 - Prob. 4QCh. 14.6 - Prob. 5QCh. 14.6 - Determine the activation energy for the reaction...Ch. 14 - Give the relative rates of disappearance of...Ch. 14 - Give the relative rates of disappearance of...Ch. 14 - In the reaction 2 O3(g) 3 O2(g), the rate of...Ch. 14 - In the synthesis of ammonia, if [H2]/t = 4.5 104...Ch. 14 - Experimental data are listed here for the reaction...Ch. 14 - 6. Phenyl acetate, an ester, reacts with water...Ch. 14 - Using the rate equation Rate = k[A]2[B], define...Ch. 14 - A reaction has the experimental rate equation Rate...Ch. 14 - The reaction between ozone and nitrogen dioxide at...Ch. 14 - Nitrosyl bromide, NOBr, is formed from NO and Br2:...Ch. 14 - The data in the table are for the reaction of NO...Ch. 14 - The reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g)...Ch. 14 - Data for the reaction NO(g) + O2(g) NO2(g) are...Ch. 14 - Data for the following reaction are given in the...Ch. 14 - The rate equation for the hydrolysis of sucrose to...Ch. 14 - The decomposition of N2O5 in CCl4 is a first-order...Ch. 14 - The decomposition of SO2Cl2 is a first-order...Ch. 14 - The conversion of cyclopropane to propene (Example...Ch. 14 - Hydrogen peroxide, H2O2(aq), decomposes to H2O()...Ch. 14 - The decomposition of nitrogen dioxide at a high...Ch. 14 - At 573 K, gaseous NO2(g) decomposes, forming NO(g)...Ch. 14 - The dimerization of butadiene, C4H6, to form...Ch. 14 - The decomposition of ammonia on a metal surface to...Ch. 14 - Hydrogen iodide decomposes when heated, forming...Ch. 14 - The rate equation for the decomposition of N2O5...Ch. 14 - Gaseous azomethane, CH3N=NCH3, decomposes in a...Ch. 14 - The decomposition of SO2Cl2 SO2Cl2(g) SO2(g) +...Ch. 14 - The compound Xe(CF3)2 decomposes in a first-order...Ch. 14 - The radioactive isotope 64Cu is used in the form...Ch. 14 - Radioactive gold-198 is used in the diagnosis of...Ch. 14 - Prob. 31PSCh. 14 - Ammonia decomposes when heated according to the...Ch. 14 - Gaseous NO2 decomposes at 573 K. NO2(g) NO(g) + ...Ch. 14 - The decomposition of HOF occurs at 25 C. HOF(g) ...Ch. 14 - Prob. 35PSCh. 14 - Prob. 36PSCh. 14 - Calculate the activation energy, Ea, for the...Ch. 14 - If the rate constant for a reaction triples when...Ch. 14 - When healed lo a high temperature, cyclobutane,...Ch. 14 - When heated, cyclopropane is converted to propene...Ch. 14 - The reaction of H2 molecules with F atoms H2(g) +...Ch. 14 - Prob. 42PSCh. 14 - What is the rate law for each of the following...Ch. 14 - What is the rate law for each of the following...Ch. 14 - Ozone, O3, in the Earths upper atmosphere...Ch. 14 - The reaction of NO2(g) and CO(g) is thought to...Ch. 14 - A proposed mechanism for the reaction of NO2 and...Ch. 14 - The mechanism for the reaction of CH3OH and HBr is...Ch. 14 - A reaction has the following experimental rate...Ch. 14 - For a first-order reaction, what fraction of...Ch. 14 - Prob. 51GQCh. 14 - Data for the following reaction are given in the...Ch. 14 - Formic acid decomposes at 550 C according to the...Ch. 14 - Isomerization of CH3NC occurs slowly when CH3NC is...Ch. 14 - When heated, tetrafluoroethylene dimerizes to form...Ch. 14 - Data in the table were collected at 540 K for the...Ch. 14 - Ammonium cyanate, NH4NCO, rearranges in water to...Ch. 14 - Prob. 58GQCh. 14 - At temperatures below 500 K, the reaction between...Ch. 14 - Nitryl fluoride can be made by treating nitrogen...Ch. 14 - The decomposition of dinitrogen pentaoxide N2O5(g)...Ch. 14 - The data in the table give the temperature...Ch. 14 - The decomposition of gaseous dimethyl ether at...Ch. 14 - The decomposition of phosphine, PH3, proceeds...Ch. 14 - The thermal decomposition of diacetylene, C4H2,...Ch. 14 - Prob. 66GQCh. 14 - The ozone in the Earths ozone layer decomposes...Ch. 14 - Hundreds of different reactions occur in the...Ch. 14 - Data for the reaction [Mn(CO)5(CH3CN)]+ + NC5H5 ...Ch. 14 - The gas-phase reaction 2 N2O5(g) 4 NO2(g) + O2(g)...Ch. 14 - Prob. 71GQCh. 14 - The decomposition of SO2Cl2 to SO2 and Cl2 is...Ch. 14 - The decomposition of nitrogen dioxide at a high...Ch. 14 - Prob. 74GQCh. 14 - Egg protein albumin is precipitated when an egg is...Ch. 14 - A The compound 1,3-butadiene (C4H6) forms...Ch. 14 - Hypofluorous acid, HOF, is very unstable,...Ch. 14 - We know that the decomposition of SO2Cl2 is...Ch. 14 - Nitramide, NO2NH2, decomposes slowly in aqueous...Ch. 14 - Prob. 80GQCh. 14 - Prob. 83ILCh. 14 - Prob. 84ILCh. 14 - The oxidation of iodide ion by the hypochlorite...Ch. 14 - The acid-catalyzed iodination of acetone...Ch. 14 - Prob. 87SCQCh. 14 - The following statements relate to the reaction...Ch. 14 - Chlorine atoms contribute to the destruction of...Ch. 14 - Prob. 91SCQCh. 14 - Prob. 92SCQCh. 14 - The reaction cyclopropane propene occurs on a...Ch. 14 - Prob. 94SCQCh. 14 - Examine the reaction coordinate diagram given...Ch. 14 - Draw a reaction coordinate diagram for an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardAccount for the relationship between the rate of a reaction and its activation energy.arrow_forwardFor the reversible, one-step reaction, A + A k₁ K = k-1 B + C the rate constant for the forward reaction, k₁, is 265 L·mol¯¹·min¯¹ and the rate constant for the reverse reaction, k₁, is 385 L·mol¯¹·min¯¹ at a given temperature. The activation energy for the forward reaction is 42.9 kJ.mol-¹, whereas the activation energy for the reverse reaction is 23.0 kJ.mol-¹. Determine the equilibrium constant, K, of this reaction.arrow_forward
- The data below were collected for the following reaction at 35° C: 2(CH3)3 CSOH(g) → (CH3)3CS(O)SC(CH3)3 (g) Time (min) [(CH3)3 CSOH] (mol · L−¹) 0.0 1.554 10.8 0.661 19.1 0.343 37.0 0.083 59.5 0.014 75.1 0.004 Part C From the slope of the appropriate plot, determine the value of the rate constant at this temperature. VG ΑΣΦ Submit Request Answer ? 5-1arrow_forwardWhen heated, cyclopropane is converted to propene. Rate constants for this reaction at 470. °C and 510. °C are ki = 1.10 x 104 s and k2 = 1.02 x 10s, respectively. Determine the activation energy, Ea, from these data. The gas constant R is 8.3145 x 10 3 kJ/mol · K. E = kJ/molarrow_forwardThe rate of a certain reaction is given by the following rate law: rate = k [NO] 2 [0₂] Use this information to answer the questions below. What is the reaction order in NO? What is the reaction order in O₂? What is verall reaction order? At a certain concentration of NO and O₂, the initial rate of reaction is 0.370 M/s. What would the initial rate of the reaction be if the concentration of NO were halved? Round your answer to 3 significant digits. The rate of the reaction is measured to be 60.0 M/s when [NO] = 0.35 M and [0₂] = 1.1 M. Calculate the value of the rate constant. Round your answer to 2 significant digits. k= 0 1 I MS M Sarrow_forward
- The rate of a certain reaction is given by the following rate law: rate =k[H,][NH;] Use this information to answer the questions below. olo What is the reaction order in H,? x10 Ar What is the reaction order in NH3? What is overall reaction order? At a certain concentration of H, and NH3, the initial rate of M reaction is 8.0 x 103 M / s. What would the initial rate of the reaction be if the concentration of H2 were doubled? Round S your answer to 2 significant digits. The rate of the reaction is measured to be 1.000M/s when [H2] = 1.0 M and [NH3] = 1.7 M. Calculate the value of the -2 -1 k = ||M •S rate constant. Round your answer to 2 significant digits.arrow_forwardThe rate of a certain reaction is given by the following rate law: rate =k[NO]°[0,] Use this information to answer the questions below. What is the reaction order in NO? What is the reaction order in O2? What is overall reaction order? At a certain concentration of NO and 02, the initial rate of M reaction is 0.180 M / s. What would the initial rate of the reaction be if the concentration of NO were doubled? Round - S your answer to 3 significant digits. The rate of the reaction is measured to be 49.0 M / s when [NO] = 0.85 M and [02] = 0.22 M. Calculate the value of the -2 -1 [M k = rate constant. Round your answer to 2 significant digits.arrow_forwardThe reaction rate for the decomposition of N,O5 to form NO2 and O2 was studied as a function of temperature. The first order reaction rate constants were found to be: T (K) k(s*) 273 7.9 x 107 298 3.5 x 105 308 1.4 x 104 318 5.0 x 104 328 1.5 x 10 3 338 4.9 x 103 What is the E, for this reaction in kJ/mol? Use Excel to plot the pertinent data and use linear regression to calculate the slope of the line connecting your data. Round your answer to 2 decimal places.arrow_forward
- Refer to the following reaction and rate law equation. A + 2B →C r = k [A] [B]² What will happen to the overall rate of reaction if the concentration of A is doubled and the concentration of B is halved? The rate of reaction will be half the initial rate. The rate of reaction will be quadruple (4x) the initial rate. The rate of reaction will remain the constant. The rate of reaction will be double (2x) the initial rate.. The rate of reaction will be a quarter of the initial rate.arrow_forwardConsider the following reaction: (a) The rate law for this reaction is first order in S₂082 (aq) and first order in I (aq). What is the rate law for this reaction? O Rate = k [S₂08² (aq)] [I (aq)] O Rate = k [S₂08² (aq)]² [[(aq)] O Rate = k [S₂08² (aq)] [I (aq)]² O Rate = k [S₂08² (aq)]² [[(aq)]² O Rate = k [S₂08² (aq)] [I (aq)]³ O Rate = k [S₂08² (aq)]4[r(aq)] (b) If the rate constant for this reaction at a certain temperature is 0.00729, what is the reaction rate when [S₂08² (aq)] = 0.0513 M and [I (aq)] = 0.0554 M? Rate = M/s. Rate = S₂08² (aq) + 3 I (aq) → 2 SO4²(aq) + 13 (aq) (c) What is the reaction rate when the concentration of S₂O² (aq) is doubled, to 0.103 M while the concentration of I (aq) is 0.0554 M? M/sarrow_forwardThe Arrhenius equation shows how the rate constant (k) for a reaction is related to various factors, as follows. k = Ae−(Ea/RT) In this equation, k is the rate constant, A is the frequency factor, Ea is the activation energy, R is the gas constant, and T is the temperature in kelvin. (The frequency factor is associated with the frequency and orientation of molecular collisions.)Calculate the activation energy for a reaction that has a rate constant of 0.242 s−1 and a frequency factor of 1.13 ✕ 1011 s−1 at 43.0°C. The gas constant, R, is 8.314472 _______J/K·mol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Enzymes - Effect of cofactors on enzyme; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=AkAbIwxyUs4;License: Standard YouTube License, CC-BY
Enzyme Catalysis Part-I; Author: NPTEL-NOC IITM;https://www.youtube.com/watch?v=aZE740JWZuQ;License: Standard Youtube License