Converting to Polar Coordinates:
In Exercises 29–-32, use polar coordinates to set up and evaluate the double
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Calculus: Early Transcendental Functions (MindTap Course List)
- -V2/2 4-x I 2 Vx2 + y² + 3 dy dx + 2 Vx2 + y² + 3 dy dx -V2 V2/2 J VI-x² Rewrite as an iterated double integral in polar coordinates and evaluate.arrow_forwardEvaluating Polar Integrals In Exercises 9-22, change the Cartesian integral into an equivalent polar integral. Then evaluate the polar integral. μl pV²-3² 11 12. Jo Jo ra I √a²-x² тугилау dy dx JOJOarrow_forwardfind area of shapearrow_forward
- convert the region xy > 0 to polar coordinatesarrow_forwardEvaluate the circulation of G = xyi + zj + 4yk around a square of side 4, centered at the origin, lying in the yz-plane, and oriented counterclockwise when viewed from the positive x-axis. Circulation = Jo F. dr =arrow_forwardFind the integral fhpæp(z+6)/(z-6) by transforming to polar coordinates. I = %3Darrow_forward
- Find centroid of shapearrow_forwardTranslation of text in image: where R is the region of the XY plane, given by R = R1 ∪ R2, and represented in the attached graph When transforming the previous integral applying the change of variable to polar coordinates, we obtain:arrow_forwardEvaluate the circulation of G = xyi + zj + 4yk around a square of side 4, centered at the origin, lying in the yz- plane, and oriented counterclockwise when viewed from the positive x-axis. Circulation = C F. dr = 0arrow_forward
- al text I 81 Compute the area of the region enclosed by the polar coordinate equation r = 2 - sin(0). A 1 I DELLarrow_forwardFind the surface area of the "Coolio McSchoolio" surface shown below using the formula: SA = integral, integral D, ||ru * rv||dA %3D The parameterization of the surface is: r(u,v) = vector brackets (uv, u + v, u - v) where u^2 + v^2 <= 1 A.) (pi/3)(6squareroot(6) - 8) B.) (pi/3)(6squareroot(6) - 2squareroot(2)) C.) (pi/6)(2squareroot(3) - squareroot(2)) D.) (pi/6)(squareroot(6) - squareroot(2)) E.) (5pi/6)(6 - squareroot(2))arrow_forwardSurface area of an ellipsoid Consider the ellipsoidx2/a2 + y2/b2 + z2/c2 = 1, where a, b, and c are positive real numbers.a. Show that the surface is described by the parametric equations r(u, ν) = ⟨a cos u sin ν, b sin u sin ν, c cos ν⟩ for 0 ≤ u ≤ 2π, 0 ≤ ν ≤ π.b. Write an integral for the surface area of the ellipsoid.arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage