Concept explainers
While cruising in level flight at a speed of 570 mi/h, a jet airplane scoops in air at a rate of 240 Ib/s and discharges it with a velocity of 2200 ft/s relative to the airplane. Determine (a) the power actually used to propel the airplane. (b) the total power developed by the engine, (c) the
(a)
The power used to propel the airplane.
Answer to Problem 14.80P
power =
Explanation of Solution
Given information:
Flight speed
Exhaust relative to the plane
Mass flow rate =
From the relation of principle of impulse and moment:
Calculation:
Power used to propel the airplane:
(b)
The total power developed by the engine.
Answer to Problem 14.80P
Total Power =
Explanation of Solution
Given information:
Flight speed
Exhaust relative to the plane
Mass flow rate =
From the relation of principle of impulse and moment:
Calculation:
Power used to propel the airplane:
Power of kinetic energy of the exhaust:
Now, total power of the airplane,
(c)
The mechanical efficiency of the airplane.
Answer to Problem 14.80P
Total Power =
Explanation of Solution
Given information:
Flight speed
Exhaust relative to the plane
Mass flow rate =
From the relation of principle of impulse and moment:
Calculation:
Power used to propel the airplane:
Power of kinetic energy of the exhaust:
Now, total power of the airplane,
Mechanical efficiency to propel the airplane
Mechanical efficiency
Mechanical efficiency
Want to see more full solutions like this?
Chapter 14 Solutions
Vector Mechanics For Engineers
- Consider an airplane with a jet engine attached to the tail section that expels combustion gases at a rate of 18 kg/s with a velocity of V = 300 m/s relative to the plane. During landing, a thrust reverser (which serves as a brake for the aircraft and facilitates landing on a short runway) is lowered in the path of the exhaust jet, which deflects the exhaust from rearward to 150°. Determine (a) the thrust (forward force) that the engine produces prior to the insertion of the thrust reverser and (b) the braking force produced after the thrust reverser is deployed.arrow_forwardA communications satellite weighing 10,000 lb, including fuel, was injected from a space shuttle in low orbit around the earth. After the satellite slowly drifted to a safe distance from the shuttle, its engine was operated to increase its speed by 8000 ft/s as the first step in its transition into a geosynchronous orbit. It is known that fuel is released with a relative speed of 13,750 ft/s. Determine the weight of fuel consumed in the process that took place. choices of the correct answer: 7930 lbs 9930 lbs 4410 lbs 5430 lbs 2230 lbsarrow_forwardWater accelerated by a nozzle to 33 m/s strikes the vertical back surface of a cart moving horizontally at a constant velocity of 9 m/s in the flow direction. The mass flow rate of water through the stationary nozzle is 30 kg/s. After the strike, the water stream splatters off in all directions in the plane of the back surface. Determine the force that needs to be applied by the brakes of the cart to prevent it from accelerating. If this force were used to generate power instead of wasting it on the brakes, determine the maximum amount of power that could ideally be generated.arrow_forward
- A Boeing 747 airliner which weighs 802,000 lb taxis down a runway and reaches a velocity of 75.0 mi/h. The airplane starts from rest, and its engines can deliver 175,000 lb of thrust. (a) Find the plane's mass. (b) Find its momentum. (c) Find its change in momentum. (d) In order to reach this velocity, what impulse was delivered to the plane? (e) How long did the plane take to reach its speed? (Assume that the thrust of the engines remains constant and ignore air resistance.)arrow_forward5. A 60-kg ice skater is standing on ice with ice skates (negligible friction). She is holding a flexible hose (essentially weightless) that directs a 2-cm-diameter stream of water horizontally parallel to her skates. The water velocity at the hose outlet is 10 m/s relative to the skater. If she is initially standing still, determine: (a) the velocity of the skater and the distance she travels in 5 s., (b) how long it will take to move 5 m and the velocity at that moment. Ice skater 10 m/s D = 2 cmarrow_forwardA spacecraft is moving in gravity-free space along a straight path when its pilot decides to accelerate forward. He turns on the thrusters, and burned fuel is ejected at a constant rate of 2.0 × 102 kg/s, at a speed (relative to the rocket) of 2.5 × 10² m/s. The initial mass of the spacecraft and its unburned fuel is 2.0 × 104 kg, and the thrusters are on for 30 s. a. What is the thrust (the force applied to the rocket by the ejected fuel) on the spacecraft? b. What is the spacecraft's acceleration as a function of time? c. What are the spacecraft's accelerations at t = 0, 15, 30, and 35 s?arrow_forward
- 5. The jet engines on an airplace must develop a certain amount of power to propel the airplane through the air with a speed of 280 km/h at a cruising altitude of 4,000 m. By what percent must the power be increased if the same airplane were to maintain its 280 km/h flight speed at 500 m altitude?arrow_forwardA 20-kg base satellite deploys three sub-satellites, each which has its own thrust capabilities, to perform research on tether propulsion. The masses of sub-satellites A, B, and C are 4 kg, 6 kg, and 8 kg, respectively, and their velocities expressed in m/s are given by vA = 4i - 2j +2k, vB = i + 4j, vC = 2i + 2j +4k. At the instant shown, what is the angular momentum HO of the system about the base satellite?arrow_forwardConsider the fall of a pole vaulting athlete as a projectile once the pole is released. The pole has a lake of 15.8 feet and once the athlete releases the pole they will find a mattress 2 feet high, 10 feet wide and 16 feet long, which protects them in the fall. If an athlete lets go of the pole when he was 13.4 feet above the ground with a velocity 17.7 ft / s at an angle of 55 degrees. Enter the Vertical initial velocity component, add the units in the result..arrow_forward
- Water flowing steadily at a rate of 0.16 m3/s is deflected downward by an angled elbow as shown. For D = 30 cm, d = 10 cm, and h = 50 cm, determine the force acting on the flanges of the elbow and the angle its line of action makes with the horizontal. Take the internal volume of the elbow to be 0.03 m3 and the weight of the elbow whose masss is 5kg.arrow_forwardA wind generator with a 30-ft-diameter blade span has a cut-in wind speed (minimum speed for power generation) of 7 mph, at which velocity the turbine generates 0.4 kW of electric power. Determine (a) the efficiency of the wind turbine–generator unit and (b) the horizontal force exerted by the wind on the supporting mast of the wind turbine. What is the effect of doubling the wind velocity to 14 mph on power generation and the force exerted? Assume the efficiency remains the same, and take the density of air to be 0.076 lbm/ft3.arrow_forwardA launch vehicle has 6 engines operating in parallel which are fed from the same propellant tank. Initially, each engine has an equivalent exhaust velocity of 3500 m/s and consumes 400 kilograms of propellant per second. One of the engines malfunctions and consequently operates at 50% thrust and 120% propellant consumption. Calculate the equivalent exhaust velocity in m/s of all engines if treated as a single engine, including the malfunctioning engine in your calculation.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY