Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.1, Problem 14.19P
To determine
(a)
The time elapsed from the first collision to the stop at D.
To determine
(b)
The speed of car B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Freight car A with a gross weight of 155000 lb is moving along the horizontal track in a switching yard at 2.3 mi/hr. Freight car B with a
gross weight of 129000 lb and moving at 2.8 mi/hr overtakes car A and is coupled to it. Determine (a) the common velocity V of the two
cars as they move together after being coupled and (b) the loss of energy |AE| due to the impact.
2.8 mi/hr
2.3 mi/hr
B
A
Answers:
(a) V =
i
mi/hr
(b) ΙΔΕΙ-
i
ft-lb
Car B is towing car A at a constant speed of 10 m/s on an uphill grade when the brakes of car A are fully applied causing all four wheels to skid. The driver of car B does not change the throttle setting or change gears. The masses of the cars A and B are 1400 kg and 1200 kg, respectively, and the coefficient of kinetic friction is 0.8. Neglecting air resistance and rolling resistance, determine (a) the distance traveled by the cars before they come to a stop, (b) the tension in the cable.
Car B is towing car A at a constant speed of 10 m/s on an uphill grade when the brakes of car A are fully applied causing all four wheels to skid. The driver of car B does not change the throttle setting or change gears. The masses of the cars A and B are 1400 kg and 1200 kg, respectively, and the coefficient of kinetic friction is 0.8. Neglecting air resistance and rolling resistance, determine (a) the distance traveled by the cars before they come to a stop, (b) the tension in the cable.
Chapter 14 Solutions
Vector Mechanics For Engineers
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - Prob. 14.3PCh. 14.1 - Prob. 14.4PCh. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9. assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - A 300-kg space vehicle traveling with a velocity...Ch. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Prob. 14.19PCh. 14.1 - Prob. 14.20PCh. 14.1 - An expert archer demonstrates his ability by...Ch. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - Prob. 14.23PCh. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - A 6-kg shell moving with a velocity...Ch. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation Ho=rmv+HG between the angular...Ch. 14.1 - Show that Eq. (14.23) may be derived directly from...Ch. 14.1 - Consider the frame of reference Ax'y'z' in...Ch. 14.1 - Show that the relation MA=HA where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - In Prob. 14.6. determine the work done by the...Ch. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Two automobiles A and B, of mass mA and mB,...Ch. 14.2 - It is assumed that each of the two automobiles...Ch. 14.2 - Solve Sample Prob. 14.5, assuming that cart A is...Ch. 14.2 - Ball B is suspended from a cord of length l...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - In a game of pool, ball A is moving with a...Ch. 14.2 - Three spheres, each with a mass of m, can slide...Ch. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - The 2-kg sub-satellite B has an initial velocity...Ch. 14.2 - A 900-lb space vehicle traveling with a velocity...Ch. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Prob. 14.49PCh. 14.2 - Three small spheres A, B, C, each of mass m, are...Ch. 14.2 - In a game of billiards, ball A is given an initial...Ch. 14.2 - For the game of billiards of Prob. 14.51, it is...Ch. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Prob. 14.55PCh. 14.2 - Prob. 14.56PCh. 14.3 - A stream of water with a density of =1000kg/m3 is...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A rotary power plow is used to remove snow from a...Ch. 14.3 - A hose discharges water at a rate of 8 m3/min with...Ch. 14.3 - Sand falls from three hoppers onto a conveyor belt...Ch. 14.3 - The stream of water shown flows at a rate of 550...Ch. 14.3 - The nozzle shown discharges water at the rate of...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m/min...Ch. 14.3 - A stream of water flowing at a rate of 1.2 m3/min...Ch. 14.3 - Prob. 14.68PCh. 14.3 - The total drag due to air friction on a jet...Ch. 14.3 - Prob. 14.70PCh. 14.3 - In order to shorten the distance required for...Ch. 14.3 - The helicopter shown can produce a maximum...Ch. 14.3 - Prior to takeoff, the pilot of a 3000-kg...Ch. 14.3 - The jet engine shown scoops in air at A at a rate...Ch. 14.3 - A jet airliner is cruising at a speed of 900 km/h...Ch. 14.3 - A 16-Mg jet airplane maintains a constant speed of...Ch. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - The wind turbine generator shown has an...Ch. 14.3 - A wind turbine generator system having a diameter...Ch. 14.3 - While cruising in level flight at a speed of 570...Ch. 14.3 - In a Pelton-wheel turbine, a stream of water is...Ch. 14.3 - A circular reentrant orifice (also called Borda’s...Ch. 14.3 - A railroad car with length L and mass mg when...Ch. 14.3 - The depth of water flowing in a rectangular...Ch. 14.3 - Determine the rate of flow in the channel of Prob....Ch. 14.3 - A chain of length I and mass m lies in a pile on...Ch. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - The ends of a chain lie in piles at A and C. When...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - A toy car is propelled by water that squirts from...Ch. 14.3 - The main propulsion system of a new space...Ch. 14.3 - The main propulsion system of a new space...Ch. 14.3 - A rocket sled bums fuel at the constant rate of...Ch. 14.3 - A space vehicle describing a circular orbit about...Ch. 14.3 - A 540-kg spacecraft is mounted on top of a rocket...Ch. 14.3 - The rocket used to launch the 540-kg spacecraft of...Ch. 14.3 - The weight of a spacecraft, including fuel, is...Ch. 14.3 - The rocket engines of a spacecraft are fired to...Ch. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb. including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - For the spacecraft and the two-stage launching...Ch. 14.3 - In a jet airplane, the kinetic energy imparted to...Ch. 14.3 - In a rocket, the kinetic energy imparted to the...Ch. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 50-kg mother and her 26-kg son are sledding down...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - In a game of pool, ball A is moving with a...Ch. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - A 15-lb block B is at rest and a spring of...Ch. 14 - A 6000-kg dump truck has a 1500-kg stone block...Ch. 14 - For the ceiling-mounted fan shown, determine the...Ch. 14 - An airplane with a weight W and a total wing span...Ch. 14 - The final component of a conveyor system receives...Ch. 14 - A garden sprinkler has four rotating arms, each of...Ch. 14 - A chain of length I and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Freight car A with a gross weight of 124000 Ib is moving along the horizontal track in a switching yard at 1.6 mi/hr. Freight car B with a gross weight of 111000 Ib and moving at 2.8 mi/hr overtakes car A and is coupled to it. Determine (a) the common velocity V of the two cars as they move together after being coupled and (b) the loss of energy JAE| due to the impact. 2.8 mi/hr 1.6 mi/hr B A Answers: (a) V = i mi/hr ( b) ΔΕΙ- i ft-lbarrow_forwardtwo automobiles A and B are approaching each other in adjacent highway lanes. at t=0, A and B are 3200ft apart. Their speeds are Va= 65 mi/h and Vb= 40 mi/h, and they are at points P and Q, respectively. knowing that A passes point Q 40s after B was there and that B passes point P 42s after A was there: A) determine the speed of B at the moment that it passes A in ft/s B.) when the vehicles pass each other in seconds C.) uniform acceleration of B in ft/s^2arrow_forwardFreight car A with a gross weight of 138000 lb is moving along the horizontal track in a switching yard at 3.0 mi/hr. Freight car B with a gross weight of 166000 lb and moving at 3.9 mi/hr overtakes car A and is coupled to it. Determine (a) the common velocity V of the two cars as they move together after being coupled and (b) the loss of energy |AE| due to the impact. 3.9 mi/hr Answers: (a) V = B i (b) |AE| = i 3.0 mi/hr mi/hr ft-lbarrow_forward
- Two cars of the same mass run head-on into each other at C. After the collision, the cars skid with their brakes locked and come to a stop in the positions shown in the lower part of the figure. Knowing that the speed of car A just before impact was 5 mi/h and that the coefficient of kinetic friction between the pavement and the tires of both cars is 0.30, determine (a) the speed of car B just before impact, (b) the effective coefficient of restitution between the two cars.arrow_forward13.21 Car B is towing car A at a constant speed of 10 m/s on an uphill grade when the brakes of car A are fully applied causing all four wheels to skid. The driver of car B does not change the throttle set- ting or change gears. The masses of the cars A and B are 1400 kg and 1200 kg, respectively, and the coefficient of kinetic friction is 0.8. Neglecting air resistance and rolling resistance, determine (a) the dis- tance traveled by the cars before they come to a stop, (b) the tension in the cable. 5° 10 m/s A Fig. P13.21 5 m 10 m/s Barrow_forwardAn estimate of the expected load on over-the-shoulder seat belts is to be made before designing prototype belts that will be evaluated in automobile crash tests. Assuming that an automobile traveling at 45 mi/h is brought to a stop in 110 ms, determine (a) the average impulsive force exerted by a 200-lb man on the belt, (b) the maximum force Fm exerted on the belt if the force-time diagram has the shape shown.arrow_forward
- The carnival ride from Prob. 12.51 is modified so that the 80-kg riders can move up and down the inclined wall as the speed of the ride increases. Assuming that the friction between the wall and the carriage is negligible, determine the position h of the rider if the speed v0 = 13 m/s.Reference to Problem 12.51:arrow_forward10 m/s 5° A 5 m 10 m/s PROBLEM 13.15 Car B is towing car A with a 5-m cable at a constant speed of 10 m/s on an uphill grade when the brakes of car B are fully applied causing it to skid to a stop. Car A, whose driver had not observed that car B was slowing down, then strikes the rear of car B. Neglecting air resistance and rolling resistance and assuming a coefficient of kinetic friction of 0.9, determine the speed of car A just before the collision. VA : 9.09 m/s =arrow_forward2. In an ore-mixing operation, a bucket full of ore is suspended from a traveling crane which moves along a stationary bridge. The bucket is to swing no more than 10 ft horizontally when the crane is brought to a sudden stop. Determine the maximum allowable speed v of the crane. (Answer: 10.51 ft/s) 30 ft Barrow_forward
- At an amusement park in the greater area there are three 180-kg bumper cars occupied by seniors. The riders in cars A, B, and C have individual masses of 50, 70, and 40 kg respectively. Car A is observed to be moving to the right with a velocity v = 2 m/s and Car C is moving at vc = 1.5 m/s to the left. Car B is initially at rest with a collision imminent. The bumper cars are designed with a coefficient of restitution of 0.8 between each car, VC A B C Determine the final velocity of each car, after all impacts for the following two collision scenarios: (a) Cars A and Chit Car B at the same time, (b) Car A hits Car B before car C does (note there will be more than two total collisions)arrow_forwardTwo blocks A and b , of mass 4 kg and 5 kg, respectively, are connected by a cord that passes over pulleys as shown. A 3-kg collar A is placed on block A and the system is released from rest. After the blocks have moved 0.9 m, collar C is removed and blocks A and B continue to move. Determine the speed of block A just before it strikes the ground.arrow_forward1. At an intersection car A was traveling south and car B was traveling 35° north of east when they slammed into each other. Upon investigation it was found that after the crash the two cars got stuck and skidded off at an angle of 15° north of east. Each driver claimed that he was going at the speed limit of 60 km/h and that he tried to slow down but couldn't avoid the crash because the other driver was going a lot faster. Knowing that the masses of cars A and B were 1000 kg and 1200 kg, respectively, determine (a) which car was going faster, (b) the speed of the faster of the two cars if the slower car was traveling at the speed limit. شکایت VB N 135⁰ B A V 15°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY