MML PRECALCULUS ENHANCED
7th Edition
ISBN: 9780134119250
Author: Sullivan
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.2, Problem 53SB
In problems 53-56, use the properties of limits and the facts that where is in radians, to find each limit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Total marks 15
3.
(i)
Let FRN Rm be a mapping and x = RN is a given
point. Which of the following statements are true? Construct counterex-
amples for any that are false.
(a)
If F is continuous at x then F is differentiable at x.
(b)
If F is differentiable at x then F is continuous at x.
If F is differentiable at x then F has all 1st order partial
(c)
derivatives at x.
(d) If all 1st order partial derivatives of F exist and are con-
tinuous on RN then F is differentiable at x.
[5 Marks]
(ii) Let mappings
F= (F1, F2) R³ → R² and
G=(G1, G2) R² → R²
:
be defined by
F₁ (x1, x2, x3) = x1 + x²,
G1(1, 2) = 31,
F2(x1, x2, x3) = x² + x3,
G2(1, 2)=sin(1+ y2).
By using the chain rule, calculate the Jacobian matrix of the mapping
GoF R3 R²,
i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)?
(iii)
[7 Marks]
Give reasons why the mapping Go F is differentiable at
(0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0).
[3 Marks]
5.
(i)
Let f R2 R be defined by
f(x1, x2) = x² - 4x1x2 + 2x3.
Find all local minima of f on R².
(ii)
[10 Marks]
Give an example of a function f: R2 R which is not bounded
above and has exactly one critical point, which is a minimum. Justify briefly
Total marks 15
your answer.
[5 Marks]
Total marks 15
4.
:
Let f R2 R be defined by
f(x1, x2) = 2x²- 8x1x2+4x+2.
Find all local minima of f on R².
[10 Marks]
(ii) Give an example of a function f R2 R which is neither
bounded below nor bounded above, and has no critical point. Justify
briefly your answer.
[5 Marks]
Chapter 14 Solutions
MML PRECALCULUS ENHANCED
Ch. 14.1 - Graph f( x )={ 3x2ifx2 3ifx=2 (pp.100-102)Ch. 14.1 - If f( x )={ xifx0 1ifx0 what is f( 0 ) ?...Ch. 14.1 - The limit of a function f( x ) as x approaches c...Ch. 14.1 - If a function f has no limit as x approaches c ,...Ch. 14.1 - True or False lim xc f( x )=N may be described by...Ch. 14.1 - True or False lim xc f( x ) exists and equals some...Ch. 14.1 - lim x2 ( 4 x 3 )Ch. 14.1 - lim x3 ( 2 x 2 +1 )Ch. 14.1 - lim x0 x+1 x 2 +1Ch. 14.1 - lim x0 2x x 2 +4
Ch. 14.1 - lim x4 x 2 4x x4Ch. 14.1 - lim x3 x 2 9 x 2 3xCh. 14.1 - lim x0 ( e x +1 )Ch. 14.1 - Prob. 14SBCh. 14.1 - lim x0 cosx1 x , x in radiansCh. 14.1 - lim x0 tanx x , x in radiansCh. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - Problems 49-52 are based on material learned...Ch. 14.1 - Problems 49-52 are based on material learned...Ch. 14.1 - Problems 49-52 are based on material learned...Ch. 14.1 - Problems 49-52 are based on material learned...Ch. 14.2 - The limit of the product of two functions equals...Ch. 14.2 - lim xc b= _____Ch. 14.2 - lim xc x= a. x b. c c. cx d. x cCh. 14.2 - True or False The limit of a polynomial function...Ch. 14.2 - True or False The limit of a rational function at...Ch. 14.2 - True or false The limit of a quotient equals the...Ch. 14.2 - In Problems 7- 42, find each limit algebraically....Ch. 14.2 - In Problems 7- 42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - Problems 57-60 are based on material learned...Ch. 14.2 - Problems 57-60 are based on material learned...Ch. 14.2 - Problems 57-60 are based on material learned...Ch. 14.2 - Problems 57-60 are based on material learned...Ch. 14.3 - For the function f( x )={ x 2 ifx0 x+1if0x2...Ch. 14.3 - What are the domain and range of f( x )=lnx ?Ch. 14.3 - True or False The exponential function f( x )= e x...Ch. 14.3 - Name the trigonometric functions that have...Ch. 14.3 - True or False Some rational functions have holes...Ch. 14.3 - True or False Every polynomial function has a...Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - Find lim x 4 f( x ) .Ch. 14.3 - Find lim x 4 + f( x ) .Ch. 14.3 - Find lim x 2 f( x ) .Ch. 14.3 - Find lim x 2 + f( x ) .Ch. 14.3 - Does lim x4 f( x ) exist? If it does, what is it?Ch. 14.3 - Does lim x0 f( x ) exist? If it does, what is it?Ch. 14.3 - Is f continuous at 4 ?Ch. 14.3 - Is f continuous at 6 ?Ch. 14.3 - Is f continuous at 0?Ch. 14.3 - Is f continuous at 2?Ch. 14.3 - Is f continuous at 4?Ch. 14.3 - Is f continuous at 5?Ch. 14.3 - lim x 1 + ( 2x+3 )Ch. 14.3 - lim x 2 ( 42x )Ch. 14.3 - lim x 1 ( 2 x 3 +5x )Ch. 14.3 - lim x 2 + ( 3 x 2 8 )Ch. 14.3 - lim x/ 2 + sinxCh. 14.3 - lim x ( 3cosx )Ch. 14.3 - lim x 2 + x 2 4 x2Ch. 14.3 - lim x 1 x 3 x x1Ch. 14.3 - lim x 1 x 2 1 x 3 +1Ch. 14.3 - lim x 0 + x 3 x 2 x 4 + x 2Ch. 14.3 - lim x 2 + x 2 +x2 x 2 +2xCh. 14.3 - lim x 4 x 2 +x12 x 2 +4xCh. 14.3 - f( x )= x 3 3 x 2 +2x6c=2Ch. 14.3 - f( x )=3 x 2 6x+5c=3Ch. 14.3 - f( x )= x 2 +5 x6 c=3Ch. 14.3 - f( x )= x 3 8 x 2 +4 c=2Ch. 14.3 - f( x )= x+3 x3 c=3Ch. 14.3 - f( x )= x6 x+6 c=6Ch. 14.3 - f( x )= x 3 +3x x 2 3x c=0Ch. 14.3 - f( x )= x 2 6x x 2 +6x c=0Ch. 14.3 - f( x )={ x 3 +3x x 2 3x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 2 6x x 2 +6x ifx0 2ifx=0 c=0Ch. 14.3 - f( x )={ x 3 +3x x 2 3x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 2 6x x 2 +6x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 3 1 x 2 1 ifx1 2ifx=1 3 x+1 ifx1 c=1Ch. 14.3 - f( x )={ x 2 2x x2 ifx2 2ifx=2 x4 x1 ifx2 c=2Ch. 14.3 - f( x )={ 2 e x ifx0 2ifx=0 x 3 +2 x 2 x 2 ifx0 c=0Ch. 14.3 - f( x )={ 3cosxifx0 3ifx=0 x 3 +3 x 2 x 2 ifx0 c=0Ch. 14.3 - f( x )=2x+3Ch. 14.3 - f( x )=43xCh. 14.3 - f( x )=3 x 2 +xCh. 14.3 - f( x )=3 x 3 +7Ch. 14.3 - f( x )=4sinxCh. 14.3 - f( x )=2cosxCh. 14.3 - f( x )=2tanxCh. 14.3 - f( x )=4cscxCh. 14.3 - f( x )= 2x+5 x 2 4Ch. 14.3 - f( x )= x 2 4 x 2 9Ch. 14.3 - f( x )= x3 InxCh. 14.3 - f( x )= lnx x3Ch. 14.3 - R( x )= x1 x 2 1 , c=1 and c=1Ch. 14.3 - R( x )= 3x+6 x 2 4 , c=2 and c=2Ch. 14.3 - R( x )= x 2 +x x 2 1 , c=1 and c=1Ch. 14.3 - R( x )= x 2 +4x x 2 16 , c=4 and c=4Ch. 14.3 - R( x )= x 3 x 2 +x1 x 4 x 3 +2x2Ch. 14.3 - R( x )= x 3 + x 2 +3x+3 x 4 + x 3 +2x+2Ch. 14.3 - R( x )= x 3 2 x 2 +4x8 x 2 +x6Ch. 14.3 - R( x )= x 3 x 2 +3x3 x 2 +3x4Ch. 14.3 - R( x )= x 3 +2 x 2 +x x 4 + x 3 +2x+2Ch. 14.3 - R( x )= x 3 3 x 2 +4x12 x 4 3 x 3 +x3Ch. 14.3 - R( x )= x 3 x 2 +x1 x 4 x 3 +2x2 Graph R(x) .Ch. 14.3 - R( x )= x 3 + x 2 +3x+3 x 4 + x 3 +2x+2 Graph R( x...Ch. 14.3 - R(x)= ( x 3 2 x 2 +4x8) ( x 2 +x6) Graph R( x ) .Ch. 14.3 - Prob. 86SBCh. 14.3 - Prob. 87SBCh. 14.3 - Prob. 88SBCh. 14.3 - Prob. 89DWCh. 14.3 - Prob. 90DWCh. 14.3 - Prob. 91RYKCh. 14.3 - Evaluate the permutation P( 5,3 ) .Ch. 14.3 - Prob. 93RYKCh. 14.3 - Prob. 94RYKCh. 14.4 - Find an equation of the line with slope 5...Ch. 14.4 - Prob. 2AYPCh. 14.4 - Prob. 3CVCh. 14.4 - Prob. 4CVCh. 14.4 - Prob. 5CVCh. 14.4 - Prob. 6CVCh. 14.4 - Prob. 7CVCh. 14.4 - Prob. 8CVCh. 14.4 - Prob. 9SBCh. 14.4 - Prob. 10SBCh. 14.4 - Prob. 11SBCh. 14.4 - Prob. 12SBCh. 14.4 - Prob. 13SBCh. 14.4 - Prob. 14SBCh. 14.4 - Prob. 15SBCh. 14.4 - Prob. 16SBCh. 14.4 - Prob. 17SBCh. 14.4 - Prob. 18SBCh. 14.4 - Prob. 19SBCh. 14.4 - Prob. 20SBCh. 14.4 - Prob. 21SBCh. 14.4 - Prob. 22SBCh. 14.4 - Prob. 23SBCh. 14.4 - Prob. 24SBCh. 14.4 - Prob. 25SBCh. 14.4 - Prob. 26SBCh. 14.4 - Prob. 27SBCh. 14.4 - Prob. 28SBCh. 14.4 - Prob. 29SBCh. 14.4 - Prob. 30SBCh. 14.4 - Prob. 31SBCh. 14.4 - f( x )=cosx at 0Ch. 14.4 - Prob. 33SBCh. 14.4 - Prob. 34SBCh. 14.4 - Prob. 35SBCh. 14.4 - Prob. 36SBCh. 14.4 - Prob. 37SBCh. 14.4 - Prob. 38SBCh. 14.4 - Prob. 39SBCh. 14.4 - Prob. 40SBCh. 14.4 - Prob. 41SBCh. 14.4 - Prob. 42SBCh. 14.4 - Prob. 43AECh. 14.4 - Prob. 44AECh. 14.4 - Prob. 45AECh. 14.4 - Prob. 46AECh. 14.4 - Prob. 47AECh. 14.4 - Instantaneous Velocity of a Ball In physics it is...Ch. 14.4 - Instantaneous Velocity on the Moon Neil Armstrong...Ch. 14.4 - Instantaneous Rate of Change The following data...Ch. 14.4 - Prob. 51RYKCh. 14.4 - Prob. 52RYKCh. 14.4 - Prob. 53RYKCh. 14.4 - Prob. 54RYKCh. 14.5 - In Problems 29-32, find the first five terms in...Ch. 14.5 - Prob. 2AYPCh. 14.5 - Prob. 3CVCh. 14.5 - Prob. 4CVCh. 14.5 - Prob. 5SBCh. 14.5 - Prob. 6SBCh. 14.5 - Prob. 7SBCh. 14.5 - Prob. 8SBCh. 14.5 - Prob. 9SBCh. 14.5 - Repeat Problem 9 for f( x )=4x .Ch. 14.5 - Prob. 11SBCh. 14.5 - Prob. 12SBCh. 14.5 - Prob. 13SBCh. 14.5 - Prob. 14SBCh. 14.5 - Prob. 15SBCh. 14.5 - Prob. 16SBCh. 14.5 - Prob. 17SBCh. 14.5 - Prob. 18SBCh. 14.5 - Prob. 19SBCh. 14.5 - Prob. 20SBCh. 14.5 - Prob. 21SBCh. 14.5 - Prob. 22SBCh. 14.5 - Prob. 23SBCh. 14.5 - Prob. 24SBCh. 14.5 - Prob. 25SBCh. 14.5 - Prob. 26SBCh. 14.5 - Prob. 27SBCh. 14.5 - Prob. 28SBCh. 14.5 - Prob. 29SBCh. 14.5 - Prob. 30SBCh. 14.5 - Prob. 31SBCh. 14.5 - Consider the function f( x )= 1 x 2 whose domain...Ch. 14.5 - Graph the function f( x )= log 2 x .Ch. 14.5 - If A=[ 1 2 3 4 ] and B=[ 5 6 0 7 8 1 ] , find AB .Ch. 14.5 - If f( x )=2 x 2 +3x+1 , find f( x+h )f( x ) h and...Ch. 14.5 - Prob. 36RYK
Additional Math Textbook Solutions
Find more solutions based on key concepts
Fill in each blank so that the resulting statement is true. The quadratic function f(x)=a(xh)2+k,a0, is in ____...
Algebra and Trigonometry (6th Edition)
CHECK POINT I You deposit $1000 in a saving account at a bank that has a rate of 4%. a. Find the amount, A, of ...
Thinking Mathematically (6th Edition)
Identifying Type I and Type II Errors In Exercises 31–36, describe type I and type II errors for a hypothesis t...
Elementary Statistics: Picturing the World (7th Edition)
Assessment 1-1A Cookies are sold singly or in packages of 2 or 6. With this packaging, how many ways can you bu...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Two dice are thrown. Let E be the event that the sum of the dice is odd, let F be the event that at least one o...
A First Course in Probability (10th Edition)
In hypothesis testing, the common level of significance is =0.05. Some might argue for a level of significance ...
Basic Business Statistics, Student Value Edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward3. Let f R2 R be a function. (i) Explain in your own words the relationship between the existence of all partial derivatives of f and differentiability of f at a point x = R². (ii) Consider R2 → R defined by : [5 Marks] f(x1, x2) = |2x1x2|1/2 Show that af af -(0,0) = 0 and -(0, 0) = 0, Jx1 მx2 but f is not differentiable at (0,0). [10 Marks]arrow_forward
- (1) Write the following quadratic equation in terms of the vertex coordinates.arrow_forwardThe final answer is 8/π(sinx) + 8/3π(sin 3x)+ 8/5π(sin5x)....arrow_forwardKeity x२ 1. (i) Identify which of the following subsets of R2 are open and which are not. (a) A = (2,4) x (1, 2), (b) B = (2,4) x {1,2}, (c) C = (2,4) x R. Provide a sketch and a brief explanation to each of your answers. [6 Marks] (ii) Give an example of a bounded set in R2 which is not open. [2 Marks] (iii) Give an example of an open set in R2 which is not bounded. [2 Marksarrow_forward
- 2. (i) Which of the following statements are true? Construct coun- terexamples for those that are false. (a) sequence. Every bounded sequence (x(n)) nEN C RN has a convergent sub- (b) (c) (d) Every sequence (x(n)) nEN C RN has a convergent subsequence. Every convergent sequence (x(n)) nEN C RN is bounded. Every bounded sequence (x(n)) EN CRN converges. nЄN (e) If a sequence (xn)nEN C RN has a convergent subsequence, then (xn)nEN is convergent. [10 Marks] (ii) Give an example of a sequence (x(n))nEN CR2 which is located on the parabola x2 = x², contains infinitely many different points and converges to the limit x = (2,4). [5 Marks]arrow_forward2. (i) What does it mean to say that a sequence (x(n)) nEN CR2 converges to the limit x E R²? [1 Mark] (ii) Prove that if a set ECR2 is closed then every convergent sequence (x(n))nen in E has its limit in E, that is (x(n)) CE and x() x x = E. [5 Marks] (iii) which is located on the parabola x2 = = x x4, contains a subsequence that Give an example of an unbounded sequence (r(n)) nEN CR2 (2, 16) and such that x(i) converges to the limit x = (2, 16) and such that x(i) # x() for any i j. [4 Marksarrow_forward1. (i) which are not. Identify which of the following subsets of R2 are open and (a) A = (1, 3) x (1,2) (b) B = (1,3) x {1,2} (c) C = AUB (ii) Provide a sketch and a brief explanation to each of your answers. [6 Marks] Give an example of a bounded set in R2 which is not open. (iii) [2 Marks] Give an example of an open set in R2 which is not bounded. [2 Marks]arrow_forward
- 2. if limit. Recall that a sequence (x(n)) CR2 converges to the limit x = R² lim ||x(n)x|| = 0. 818 - (i) Prove that a convergent sequence (x(n)) has at most one [4 Marks] (ii) Give an example of a bounded sequence (x(n)) CR2 that has no limit and has accumulation points (1, 0) and (0, 1) [3 Marks] (iii) Give an example of a sequence (x(n))neN CR2 which is located on the hyperbola x2 1/x1, contains infinitely many different Total marks 10 points and converges to the limit x = (2, 1/2). [3 Marks]arrow_forward3. (i) Consider a mapping F: RN Rm. Explain in your own words the relationship between the existence of all partial derivatives of F and dif- ferentiability of F at a point x = RN. (ii) [3 Marks] Calculate the gradient of the following function f: R2 → R, f(x) = ||x||3, Total marks 10 where ||x|| = √√√x² + x/2. [7 Marks]arrow_forward1. (i) (ii) which are not. What does it mean to say that a set ECR2 is closed? [1 Mark] Identify which of the following subsets of R2 are closed and (a) A = [-1, 1] × (1, 3) (b) B = [-1, 1] x {1,3} (c) C = {(1/n², 1/n2) ER2 | n EN} Provide a sketch and a brief explanation to each of your answers. [6 Marks] (iii) Give an example of a closed set which does not have interior points. [3 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Limits and Continuity; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=9brk313DjV8;License: Standard YouTube License, CC-BY