PROB SOLV MATH ACCESS
11th Edition
ISBN: 2818440052330
Author: BILLSTEIN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 14.2, Problem 4NAEP
To determine
To find:
The coordinates of the image of the vertex, when the triangle is reflected over the y-axis.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
30 Explain how you can use the empirical rule
to find out whether a data set is mound-
shaped, using only the values of the data
themselves (no histogram available).
5. Let X be a positive random variable with finite variance, and let A = (0, 1).
Prove that
P(X AEX) 2 (1-A)² (EX)²
EX2
6. Let, for p = (0, 1), and xe R. X be a random variable defined as follows:
P(X=-x) = P(X = x)=p. P(X=0)= 1-2p.
Show that there is equality in Chebyshev's inequality for X.
This means that Chebyshev's inequality, in spite of being rather crude, cannot be
improved without additional assumptions.
Chapter 14 Solutions
PROB SOLV MATH ACCESS
Ch. 14.1 - Prob. 1MCCh. 14.1 - Prob. 3MCCh. 14.1 - Prob. 5MCCh. 14.1 - Prob. 6MCCh. 14.1 - Prob. 7MCCh. 14.1 - A drawing of a cube, shown in the following...Ch. 14.1 - Wall stenciling has been used to obtain an effect...Ch. 14.1 - Prob. 10MCCh. 14.1 - The following figure is a partial tessellation of...Ch. 14.1 - Prob. 12MC
Ch. 14.1 - Prob. 13MCCh. 14.1 - Prob. 14MCCh. 14.1 - Prob. 15MCCh. 14.1 - Prob. 18MCCh. 14.1 - Prob. 19MCCh. 14.1 - Prob. 20MCCh. 14.1 - Prob. 21MCCh. 14.1 - Karrin claims that centers of rotation must be at...Ch. 14.1 - A student asks if the image seen through a...Ch. 14.1 - Jillian wants to know why a regular pentagon will...Ch. 14.1 - Prob. 26MCCh. 14.1 - Prob. 1NAEPCh. 14.1 - Prob. 2NAEPCh. 14.1 - Prob. 3NAEPCh. 14.1A - For each of the following, find the image of the...Ch. 14.1A - Prob. 2ACh. 14.1A - Find the coordinates of the image for each of the...Ch. 14.1A - Prob. 4ACh. 14.1A - Prob. 7ACh. 14.1A - Prob. 8ACh. 14.1A - Prob. 9ACh. 14.1A - Prob. 11ACh. 14.1A - Prob. 12ACh. 14.1A - Prob. 13ACh. 14.1A - Prob. 14ACh. 14.1A - Prob. 15ACh. 14.1A - A 1-inch blue square piece of sidewalk chalk is...Ch. 14.1A - Prob. 17ACh. 14.1A - Prob. 18ACh. 14.1A - Prob. 19ACh. 14.1A - Prob. 20ACh. 14.1A - Prob. 22ACh. 14.1A - Prob. 23ACh. 14.1A - Prob. 24ACh. 14.1A - Prob. 25ACh. 14.1A - Prob. 26ACh. 14.1A - Prob. 27ACh. 14.1A - Prob. 28ACh. 14.1B - Prob. 2ACh. 14.1B - Prob. 3ACh. 14.1B - Prob. 4ACh. 14.1B - Prob. 7ACh. 14.1B - Prob. 11ACh. 14.1B - Prob. 12ACh. 14.1B - Prob. 13ACh. 14.1B - Prob. 14ACh. 14.1B - Prob. 15ACh. 14.2 - Prob. 1MCCh. 14.2 - Prob. 2MCCh. 14.2 - Prob. 3MCCh. 14.2 - Prob. 4MCCh. 14.2 - Prob. 5MCCh. 14.2 - Prob. 6MCCh. 14.2 - Prob. 7MCCh. 14.2 - Prob. 8MCCh. 14.2 - Prob. 9MCCh. 14.2 - Prob. 13MCCh. 14.2 - Prob. 15MCCh. 14.2 - Prob. 17MCCh. 14.2 - Prob. 18MCCh. 14.2 - Prob. 19MCCh. 14.2 - Prob. 20MCCh. 14.2 - Prob. 22MCCh. 14.2 - Prob. 1NAEPCh. 14.2 - Prob. 2NAEPCh. 14.2 - Prob. 3NAEPCh. 14.2 - Prob. 4NAEPCh. 14.2 - Prob. 5NAEPCh. 14.2A - Assessment 14-2A Describe how to find the image of...Ch. 14.2A - Prob. 2ACh. 14.2A - Assessment 14-2A Determine the final result when...Ch. 14.2A - Prob. 4ACh. 14.2A - Assessment 14-2A a. Refer to the following figure...Ch. 14.2A - Prob. 6ACh. 14.2A - a. Reflect triangle ABC across line j, then across...Ch. 14.2A - Assessment 14-2A Given ABC and its reflection...Ch. 14.2A - Prob. 9ACh. 14.2A - Prob. 10ACh. 14.2A - Decide whether a reflection, a translation, a...Ch. 14.2A - a. Conjecture what the image of a point with...Ch. 14.2A - Prob. 16ACh. 14.2A - Prob. 17ACh. 14.2A - Prob. 18ACh. 14.2A - Point P is the image of P not shown under a glide...Ch. 14.2A - Consider the glide reflection determined by the...Ch. 14.2B - Prob. 1ACh. 14.2B - Prob. 2ACh. 14.2B - Determine the final result when ABCis reflection...Ch. 14.2B - Prob. 4ACh. 14.2B - Prob. 6ACh. 14.2B - Prob. 7ACh. 14.2B - Prob. 8ACh. 14.2B - Prob. 9ACh. 14.2B - Prob. 10ACh. 14.2B - Prob. 11ACh. 14.2B - Prob. 12ACh. 14.2B - Prob. 13ACh. 14.2B - Prob. 14ACh. 14.2B - Prob. 15ACh. 14.2B - In which line will the two intersecting circles...Ch. 14.2B - Prob. 18ACh. 14.2B - If PQ is the image PQ not shown under a glide...Ch. 14.2B - Prob. 20ACh. 14.2B - Prob. 21ACh. 14.3 - Prob. 1MCCh. 14.3 - Prob. 2MCCh. 14.3 - Prob. 3MCCh. 14.3 - Prob. 5MCCh. 14.3 - Prob. 6MCCh. 14.3 - Prob. 7MCCh. 14.3 - Prob. 8MCCh. 14.3 - Prob. 9MCCh. 14.3 - Prob. 10MCCh. 14.3 - Prob. 12MCCh. 14.3 - Prob. 13MCCh. 14.3 - Prob. 14MCCh. 14.3 - Prob. 15MCCh. 14.3 - Prob. 16MCCh. 14.3 - Prob. 17MCCh. 14.3A - In the following figures, describe a sequence of...Ch. 14.3A - Prob. 2ACh. 14.3A - In each of the following drawings, find...Ch. 14.3A - Prob. 4ACh. 14.3A - AB is the image of a candle AB produced by a box...Ch. 14.3A - Prob. 6ACh. 14.3A - Prob. 7ACh. 14.3A - Prob. 8ACh. 14.3A - Prob. 9ACh. 14.3A - Prob. 10ACh. 14.3A - Prob. 11ACh. 14.3A - Prob. 12ACh. 14.3A - Prob. 13ACh. 14.3B - Prob. 1ACh. 14.3B - Prob. 2ACh. 14.3B - Prob. 4ACh. 14.3B - Prob. 5ACh. 14.3B - Prob. 6ACh. 14.3B - Prob. 7ACh. 14.3B - Prob. 8ACh. 14.3B - Prob. 9ACh. 14.3B - Prob. 11ACh. 14.3B - Prob. 12ACh. 14.3B - Prob. 13ACh. 14.CR - Prob. 1CRCh. 14.CR - Prob. 2CRCh. 14.CR - Prob. 3CRCh. 14.CR - Prob. 4CRCh. 14.CR - Given that STAR in the figure shown is a...Ch. 14.CR - Prob. 6CRCh. 14.CR - Given that SNOSWO in the following figure,...Ch. 14.CR - Prob. 8CRCh. 14.CR - Prob. 9CRCh. 14.CR - Prob. 10CRCh. 14.CR - If a translation determined by (x,y)(x+3,y2) is...Ch. 14.CR - Prob. 12CRCh. 14.CR - Prob. 13CRCh. 14.CR - On a 1-m equilateral triangle pool table, a ball...Ch. 14.CR - Prob. 15CRCh. 14.CR - Prob. 16CRCh. 14.CR - Prob. 17CRCh. 14.CR - Prob. 18CRCh. 14.CR - Prob. 19CRCh. 14.CR - Prob. 21CRCh. 14.CR - Prob. 22CRCh. 14.CR - Prob. 23CRCh. 14.CR - Prob. 24CRCh. 14.CR - Prob. 25CRCh. 14.CR - Prob. 26CRCh. 14.CR - What dilation, if any, allows a line with equation...Ch. 14 - Prob. 1NT
Knowledge Booster
Similar questions
- 4. Prove that, for any random variable X, the minimum of EIX-al is attained for a = med (X).arrow_forward8. Recall, from Sect. 2.16.4, the likelihood ratio statistic, Ln, which was defined as a product of independent, identically distributed random variables with mean 1 (under the so-called null hypothesis), and the, sometimes more convenient, log-likelihood, log L, which was a sum of independent, identically distributed random variables, which, however, do not have mean log 1 = 0. (a) Verify that the last claim is correct, by proving the more general statement, namely that, if Y is a non-negative random variable with finite mean, then E(log Y) log(EY). (b) Prove that, in fact, there is strict inequality: E(log Y) < log(EY), unless Y is degenerate. (c) Review the proof of Jensen's inequality, Theorem 5.1. Generalize with a glimpse on (b).arrow_forward2. Derive the component transformation equations for tensors shown be- low where [C] = [BA] is the direction cosine matrix from frame A to B. B[T] = [C]^[T][C]T 3. The transport theorem for vectors shows that the time derivative can be constructed from two parts: the first is an explicit frame-dependent change of the vector whereas the second is an active rotational change of the vector. The same holds true for tensors. Starting from the previous result, derive a version of transport theorem for tensors. [C] (^[T])[C] = dt d B dt B [T] + [WB/A]B[T] – TWB/A] (10 pt) (7pt)arrow_forward
- Use the graph of the function y = f (x) to find the value, if possible. f(x) 8 7 6 Q5 y 3 2 1 x -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 -1 -2 -3 -4 -5 -6 -7 -8+ Olim f(z) x-1+ O Limit does not exist.arrow_forward3. Prove that, for any random variable X, the minimum of E(X - a)² is attained for a = EX. Provedarrow_forwardShade the areas givenarrow_forward
- 7. Cantelli's inequality. Let X be a random variable with finite variance, o². (a) Prove that, for x ≥ 0, P(X EX2x)≤ 02 x² +0² 202 P(|X - EX2x)<≤ (b) Find X assuming two values where there is equality. (c) When is Cantelli's inequality better than Chebyshev's inequality? (d) Use Cantelli's inequality to show that med (X) - EX ≤ o√√3; recall, from Proposition 6.1, that an application of Chebyshev's inequality yields the bound o√√2. (e) Generalize Cantelli's inequality to moments of order r 1.arrow_forwardThe college hiking club is having a fundraiser to buy new equipment for fall and winter outings. The club is selling Chinese fortune cookies at a price of $2 per cookie. Each cookie contains a piece of paper with a different number written on it. A random drawing will determine which number is the winner of a dinner for two at a local Chinese restaurant. The dinner is valued at $32. Since fortune cookies are donated to the club, we can ignore the cost of the cookies. The club sold 718 cookies before the drawing. Lisa bought 13 cookies. Lisa's expected earnings can be found by multiplying the value of the dinner by the probability that she will win. What are Lisa's expected earnings? Round your answer to the nearest cent.arrow_forwardThe Honolulu Advertiser stated that in Honolulu there was an average of 659 burglaries per 400,000 households in a given year. In the Kohola Drive neighborhood there are 321 homes. Let r be the number of homes that will be burglarized in a year. Use the formula for Poisson distribution. What is the value of p, the probability of success, to four decimal places?arrow_forward
- The college hiking club is having a fundraiser to buy new equipment for fall and winter outings. The club is selling Chinese fortune cookies at a price of $2 per cookie. Each cookie contains a piece of paper with a different number written on it. A random drawing will determine which number is the winner of a dinner for two at a local Chinese restaurant. The dinner is valued at $32. Since fortune cookies are donated to the club, we can ignore the cost of the cookies. The club sold 718 cookies before the drawing. Lisa bought 13 cookies. Lisa's expected earnings can be found by multiplying the value of the dinner by the probability that she will win. What are Lisa's expected earnings? Round your answer to the nearest cent.arrow_forwardWhat was the age distribution of nurses in Great Britain at the time of Florence Nightingale? Thanks to Florence Nightingale and the British census of 1851, we have the following information (based on data from the classic text Notes on Nursing, by Florence Nightingale). Note: In 1851 there were 25,466 nurses in Great Britain. Furthermore, Nightingale made a strict distinction between nurses and domestic servants. Use a histogram and graph the probability distribution. Using the graph of the probability distribution determine the probability that a British nurse selected at random in 1851 would be 40 years of age or older. Round your answer to nearest thousandth. Age range (yr) 20–29 30–39 40–49 50–59 60–69 70–79 80+ Midpoint (x) 24.5 34.5 44.5 54.5 64.5 74.5 84.5 Percent of nurses 5.7% 9.7% 19.5% 29.2% 25.0% 9.1% 1.8%arrow_forwardWhat was the age distribution of nurses in Great Britain at the time of Florence Nightingale? Thanks to Florence Nightingale and the British census of 1851, we have the following information (based on data from the classic text Notes on Nursing, by Florence Nightingale). Note: In 1851 there were 25,466 nurses in Great Britain. Furthermore, Nightingale made a strict distinction between nurses and domestic servants. Use a histogram and graph the probability distribution. Using the graph of the probability distribution determine the probability that a British nurse selected at random in 1851 would be 40 years of age or older. Round your answer to nearest thousandth. Age range (yr) 20–29 30–39 40–49 50–59 60–69 70–79 80+ Midpoint (x) 24.5 34.5 44.5 54.5 64.5 74.5 84.5 Percent of nurses 5.7% 9.7% 19.5% 29.2% 25.0% 9.1% 1.8%arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education