College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.10, Problem 14.5QQ
To determine
The frequency of the organ pipe with increase in temperature.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
a brass pipe is open on one end and closed on the other. on a cold winter day with a temperature of -30° C it has a fundamental frequency of 20Hz. a) what is the length of the pipe?b) if the pipe is placed in a 500° C oven, what is the fundamental frequency once it is in thermal equilibrium?
The longest pipe on a certain organ is 4.88 m. What is the fundamental frequency(at 0.00°C) if the pipe is:(a) closed at one end?(b) open at each end?(c) What will be the frequencies at 20.0°C?
An aluminum pipe is open on one end and closed on the other. On a cold winter day with a temperature of -40° C it has a fundamental frequency of 30 Hz. a) What is the length of the pipe? b) If the pipe is placed in a 500° C oven, what is the fundamental frequency once it is in thermal equilibrium?
Chapter 14 Solutions
College Physics
Ch. 14.3 - Which of the following actions will increase the...Ch. 14.6 - Suppose youre on a hot air balloon ride, carrying...Ch. 14.6 - As an airplane flying with constant velocity moves...Ch. 14.8 - Which of the following frequencies are higher...Ch. 14.10 - Prob. 14.5QQCh. 14.10 - Prob. 14.6QQCh. 14.11 - You are tuning a guitar by comparing the sound of...Ch. 14 - (a) You are driving down the highway in your car...Ch. 14 - When dealing with sound intensities and decibel...Ch. 14 - Fill in the blanks with the correct values (to two...
Ch. 14 - Explain how the distance to a lightning bolt (Fig....Ch. 14 - Two cars are on the same straight road. Car A...Ch. 14 - Why does a vibrating guitar string sound louder...Ch. 14 - You are driving toward the base of a cliff and you...Ch. 14 - Prob. 8CQCh. 14 - Prob. 9CQCh. 14 - Prob. 10CQCh. 14 - An airplane mechanic notices that the sound from a...Ch. 14 - Suppose you hear a clap of thunder 16.2 s after...Ch. 14 - Earthquakes at fault lines in Earths crust create...Ch. 14 - On a hot summer day, the temperature of air in...Ch. 14 - A dolphin located in seawater at a temperature of...Ch. 14 - A group of hikers hears an echo 3.00 s after...Ch. 14 - The range of human hearing extends from...Ch. 14 - Prob. 7PCh. 14 - A stone is dropped from rest into a well. The...Ch. 14 - A hammer strikes one end of a thick steel rail of...Ch. 14 - A person standing 1.00 m from a portable speaker...Ch. 14 - The mating call of a male cicada is among the...Ch. 14 - The intensity level produced by a jet airplane at...Ch. 14 - One of the loudest sounds in recent history was...Ch. 14 - A sound wave from a siren has an intensity of...Ch. 14 - A person wears a hearing aid that uniformly...Ch. 14 - The area of a typical eardrum is about 5.0 105...Ch. 14 - The toadfish makes use of resonance in a closed...Ch. 14 - A trumpet creates a sound intensity level of 1.15 ...Ch. 14 - There is evidence that elephants communicate via...Ch. 14 - A family ice show is held at an enclosed arena....Ch. 14 - A train sounds its horn as it approaches an...Ch. 14 - An outside loudspeaker (considered a small source)...Ch. 14 - Show that the difference in decibel levels 1 and 2...Ch. 14 - A skyrocket explodes 100 m above the ground (Fig....Ch. 14 - The Doppler Effect A baseball hits a car, breaking...Ch. 14 - A train is moving past a crossing where cars are...Ch. 14 - A commuter train passes a passenger platform at a...Ch. 14 - An airplane traveling at half the speed of sound...Ch. 14 - Two trains on separate tracks move toward each...Ch. 14 - At rest, a cars horn sounds the note A (440 Hz)....Ch. 14 - An alert physics student stands beside the tracks...Ch. 14 - A bat flying at 5.00 m/s is chasing an insect...Ch. 14 - A tuning fork vibrating at 512 Hz falls from rest...Ch. 14 - Expectant parents are thrilled to hear their...Ch. 14 - A supersonic jet traveling at Mach 3.00 at an...Ch. 14 - A yellow submarine traveling horizontally at 11.0...Ch. 14 - Two cars are stuck in a traffic jam and each...Ch. 14 - The acoustical system shown in Figure P14.38 is...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - A pair of speakers separated by a distance d =...Ch. 14 - Prob. 42PCh. 14 - A stretched string fixed at each end has a mass of...Ch. 14 - Prob. 44PCh. 14 - A stretched string of length L is observed to...Ch. 14 - A distance of 5.00 cm is measured between two...Ch. 14 - A steel wire with mass 25.0 g and length 1.35 m is...Ch. 14 - Prob. 48PCh. 14 - A 12.0-kg object hangs in equilibrium from a...Ch. 14 - In the arrangement shown in Figure P14.50, an...Ch. 14 - Prob. 51PCh. 14 - Standing-ware vibrations are set up in a crystal...Ch. 14 - A cars 30.0-kg front tire is suspended by a spring...Ch. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - The overall length of a piccolo is 32.0 cm. The...Ch. 14 - The human ear canal is about 2.8 cm long. If it is...Ch. 14 - A tunnel under a river is 2.00 km long. (a) At...Ch. 14 - A pipe open at both ends has a fundamental...Ch. 14 - The adjacent natural frequencies of an organ pipe...Ch. 14 - A guitarist sounds a tuner at 196 Hz while his...Ch. 14 - Two nearby trumpets are sounded together and a...Ch. 14 - Prob. 63PCh. 14 - The G string on a violin has a fundamental...Ch. 14 - Two train whistles have identical frequencies of...Ch. 14 - Two pipes of equal length are each open at one...Ch. 14 - A student holds a tuning dork oscillating at 256...Ch. 14 - Prob. 68PCh. 14 - Some studies suggest that the upper frequency...Ch. 14 - A typical sound level for a buzzing mosquito is 40...Ch. 14 - Assume a 150 W loudspeaker broadcasts sound...Ch. 14 - Two small loudspeakers emit sound waves of...Ch. 14 - An interstate highway has been built through a...Ch. 14 - Prob. 74APCh. 14 - Prob. 75APCh. 14 - Prob. 76APCh. 14 - On a workday, the average decibel level of a busy...Ch. 14 - Prob. 78APCh. 14 - A block with a speaker bolted to it is connected...Ch. 14 - A student stands several meters in front of a...Ch. 14 - Prob. 81APCh. 14 - A 0.500-m-long brass pipe open at both ends has a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forwardA 4.0-m-long pipe, open at one end and closed at one end, is in a room where the temperature is T = 22°C. A speaker capable of producing variable frequencies is placed at the open end and is used to cause the tube to resonate. (a) What is the wavelength and the frequency of the fundamental frequency? (b) What is the frequency and wavelength of the first overtone?arrow_forward
- A 4.0-m-long pipe, open at both ends, is placed in a room where the temperature is T = 25°C. A speaker capable of producing variable frequencies is placed at the open end and is used to cause the tube to resonate. (a) What are the wavelength and the frequency of the fundamental frequency? (b) What are the frequency and wavelength of the first overtone?arrow_forwardA pipe open at both ends has a fundamental frequency of 3.00 x 102 Hz when the temperature is 0°C. (a) What is the length of the pipe? (b) What is the fundamental frequency at a temperature of 30.0°C?arrow_forwardA music instrument is open only on one end. When a musician blows air in it, it is at the body temperature of 36C. If the musician places a finger to form a column of 20cm, what is the fundamental frequency of the sound produced? What is the wavelength of that sound wave?arrow_forward
- A 0.485-m-long brass pipe open at both ends has a fundamental frequency of 347 Hz. (The coefficient of linear expansion for brass is 19 ✕ 10−6 °C−1.) a) Determine the temperature of the air in the pipe. b) If the temperature is increased by 22.0°C, what is the new fundamental frequency of the pipe? Be sure to include the effects of temperature on both the speed of sound in air and the length of the pipe.arrow_forwardBalboa Park in San Diego has an outdoor organ. When the air temperature increases, how does the fundamental frequency of the one of the organ pipes change? (The thermal expansion of the pipe is negligible.) stays the same impossible to determine decreases increasesarrow_forwardSome studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 2.00 x 104 Hz? (Assume a body temperature of 37.0°C.)arrow_forward
- A copper wire, whose cross-sectional area is 8.58 x 106 m², has a linear density of 6.18 x 103 kg/m and is strung between two walls. At the ambient temperature, a transverse wave travels with a speed of 60.8 m/s on this wire. The coefficient of linear expansion for copper is 17 x 10-6 (Cº)-1, and Young's modulus for copper is 1.1 x 10¹1 N/m². What will be the speed of the wave when the temperature is lowered by 26.5 Cº? Ignore any change in the linear density caused by the change in temperature. Number i Unitsarrow_forwardIf a human ear canal can be thought of as resembling an organ pipe, closed at one end, that resonates at a fundamental frequency of 3.0 x 103 Hz, what is the length of the canal? Use a normal body temperature of 37.0°C for your determination of the speed of sound in the canal.arrow_forwardAsaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University