Aleks 360 Access Card (18 Weeks) for Beginning & Intermediate Algebra
4th Edition
ISBN: 9780077564018
Author: ALEKS Corporation
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.1, Problem 32PE
For Exercises 25–32, evaluate the expression. (See Example 2.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the domain, range, increasing intervals (theres 3), decreasing intervals, roots, y-intercepts, end behavior (approaches four times), leading coffiencent status (is it negative, positivie?) the degress status (zero, undifined etc ), the absolute max, is there a absolute minimum, relative minimum, relative maximum, the root is that has a multiplicity of 2, the multiplicity of 3.
What is the vertex, axis of symmerty, all of the solutions, all of the end behaviors, the increasing interval, the decreasing interval, describe all of the transformations that have occurred EXAMPLE Vertical shrink/compression (wider). or Vertical translation down, the domain and range of this graph EXAMPLE Domain: x ≤ -1 Range: y ≥ -4.
4.
Select all of the solutions for x²+x - 12 = 0?
A. -12
B. -4
C. -3
D. 3
E 4
F 12
4 of 10
Chapter 14 Solutions
Aleks 360 Access Card (18 Weeks) for Beginning & Intermediate Algebra
Ch. 14.1 - Prob. 1SPCh. 14.1 - Prob. 2SPCh. 14.1 - Evaluate the expressions.
3. 1!
Ch. 14.1 - Prob. 4SPCh. 14.1 - Evaluate. 5!4!1!Ch. 14.1 - Evaluate. 5!3!2!Ch. 14.1 - Write out the first three terms of ( x + y ) 5 .Ch. 14.1 - 8. Use the binomial theorem to expand .
Ch. 14.1 - Use the binomial theorem to expand ( 2 a − 3 b 2 )...Ch. 14.1 - Find the fourth term of ( x + y ) 8 .
Ch. 14.1 - 11. Find the fifth term of .
Ch. 14.1 - a. The expanded form of ( x + b ) 2 =...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For a > 0 and b > 0 , what happens to the signs of...Ch. 14.1 - For Exercises 15–18, evaluate the expression. (See...Ch. 14.1 - For Exercises 15–18, evaluate the expression. (See...Ch. 14.1 - For Exercises 15–18, evaluate the expression. (See...Ch. 14.1 - For Exercises 15–18, evaluate the expression. (See...Ch. 14.1 - True or false: 0 ! ≠ 1 !Ch. 14.1 - True or false: n! is defined for negative...Ch. 14.1 - True or false: n ! = n for n = 1 and 2 .Ch. 14.1 -
22. Show that !
Ch. 14.1 - Show that 6 ! = 6 ⋅ 5 !Ch. 14.1 - Show that 8 ! = 8 ⋅ 7 !Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - Prob. 33PECh. 14.1 - Prob. 34PECh. 14.1 - Prob. 35PECh. 14.1 - For Exercises 33–36, find the first three terms of...Ch. 14.1 - Prob. 37PECh. 14.1 - Prob. 38PECh. 14.1 - Prob. 39PECh. 14.1 - Prob. 40PECh. 14.1 - For Exercises 39–50, use the binomial theorem to...Ch. 14.1 - Prob. 42PECh. 14.1 - Prob. 43PECh. 14.1 - Prob. 44PECh. 14.1 - Prob. 45PECh. 14.1 - For Exercises 39–50, use the binomial theorem to...Ch. 14.1 - Prob. 47PECh. 14.1 - For Exercises 39–50, use the binomial theorem to...Ch. 14.1 - Prob. 49PECh. 14.1 - Prob. 50PECh. 14.1 - Prob. 51PECh. 14.1 - Prob. 52PECh. 14.1 - Prob. 53PECh. 14.1 - Prob. 54PECh. 14.1 - Prob. 55PECh. 14.1 - For Exercises 51–56, find the indicated term of...Ch. 14.2 - Prob. 1SPCh. 14.2 - Prob. 2SPCh. 14.2 - Prob. 3SPCh. 14.2 - Prob. 4SPCh. 14.2 - Prob. 5SPCh. 14.2 - Prob. 6SPCh. 14.2 - Prob. 7SPCh. 14.2 - Prob. 8SPCh. 14.2 - Prob. 9SPCh. 14.2 - Prob. 10SPCh. 14.2 - Prob. 11SPCh. 14.2 - Prob. 12SPCh. 14.2 - Prob. 1PECh. 14.2 - Prob. 2PECh. 14.2 - Prob. 3PECh. 14.2 - Prob. 4PECh. 14.2 - Prob. 5PECh. 14.2 - Prob. 6PECh. 14.2 - Prob. 7PECh. 14.2 - Prob. 8PECh. 14.2 - Prob. 9PECh. 14.2 - Prob. 10PECh. 14.2 - Prob. 11PECh. 14.2 - Prob. 12PECh. 14.2 - Prob. 13PECh. 14.2 - Prob. 14PECh. 14.2 - Prob. 15PECh. 14.2 - Prob. 16PECh. 14.2 - Prob. 17PECh. 14.2 - Prob. 18PECh. 14.2 - Prob. 19PECh. 14.2 - Prob. 20PECh. 14.2 - Prob. 21PECh. 14.2 - Prob. 22PECh. 14.2 - Prob. 23PECh. 14.2 - Prob. 24PECh. 14.2 - Prob. 25PECh. 14.2 - Prob. 26PECh. 14.2 - Prob. 27PECh. 14.2 - Prob. 28PECh. 14.2 - Prob. 29PECh. 14.2 - For Exercises 21–32, find a formula for the nth...Ch. 14.2 - Prob. 31PECh. 14.2 - Prob. 32PECh. 14.2 - Edmond borrowed $500. To pay off the loan, he...Ch. 14.2 - Prob. 34PECh. 14.2 - Prob. 35PECh. 14.2 - Prob. 36PECh. 14.2 - Prob. 37PECh. 14.2 - Prob. 38PECh. 14.2 - Prob. 39PECh. 14.2 - Prob. 40PECh. 14.2 - Prob. 41PECh. 14.2 - Prob. 42PECh. 14.2 - Prob. 43PECh. 14.2 - Prob. 44PECh. 14.2 - Prob. 45PECh. 14.2 - Prob. 46PECh. 14.2 - For Exercises 39–54, find the sums. (See Examples...Ch. 14.2 - Prob. 48PECh. 14.2 - For Exercises 39–54, find the sums. (See Examples...Ch. 14.2 - Prob. 50PECh. 14.2 - Prob. 51PECh. 14.2 - Prob. 52PECh. 14.2 - Prob. 53PECh. 14.2 - For Exercises 39–54, find the sums. (See Examples...Ch. 14.2 - Prob. 55PECh. 14.2 - Prob. 56PECh. 14.2 - Prob. 57PECh. 14.2 - Prob. 58PECh. 14.2 - Prob. 59PECh. 14.2 - Prob. 60PECh. 14.2 - Prob. 61PECh. 14.2 - Prob. 62PECh. 14.2 - Prob. 63PECh. 14.2 - For Exercises 55–66, write the series in summation...Ch. 14.2 - Prob. 65PECh. 14.2 - Prob. 66PECh. 14.2 - Prob. 67PECh. 14.2 - Prob. 68PECh. 14.2 - Prob. 69PECh. 14.2 - Prob. 70PECh. 14.2 - 71. A famous sequence in mathematics is called the...Ch. 14.3 - Prob. 1SPCh. 14.3 - Prob. 2SPCh. 14.3 - Prob. 3SPCh. 14.3 - Prob. 4SPCh. 14.3 - Prob. 5SPCh. 14.3 - Prob. 1PECh. 14.3 - Prob. 2PECh. 14.3 - Prob. 3PECh. 14.3 - Prob. 4PECh. 14.3 - Prob. 5PECh. 14.3 - Prob. 6PECh. 14.3 - Prob. 7PECh. 14.3 - Prob. 8PECh. 14.3 - Prob. 9PECh. 14.3 - For Exercises 7–12, the first term of an...Ch. 14.3 - Prob. 11PECh. 14.3 - Prob. 12PECh. 14.3 - Prob. 13PECh. 14.3 - Prob. 14PECh. 14.3 - Prob. 15PECh. 14.3 - Prob. 16PECh. 14.3 - Prob. 17PECh. 14.3 - Prob. 18PECh. 14.3 - Prob. 19PECh. 14.3 - Prob. 20PECh. 14.3 - Prob. 21PECh. 14.3 - Prob. 22PECh. 14.3 - Prob. 23PECh. 14.3 - Prob. 24PECh. 14.3 - Prob. 25PECh. 14.3 - Prob. 26PECh. 14.3 - Prob. 27PECh. 14.3 - Prob. 28PECh. 14.3 - Prob. 29PECh. 14.3 - For Exercises 25–33, write the nth term of the...Ch. 14.3 - For Exercises 25–33, write the nth term of the...Ch. 14.3 - Prob. 32PECh. 14.3 - Prob. 33PECh. 14.3 - Prob. 34PECh. 14.3 - Prob. 35PECh. 14.3 - Prob. 36PECh. 14.3 - Prob. 37PECh. 14.3 - Prob. 38PECh. 14.3 - Prob. 39PECh. 14.3 - Prob. 40PECh. 14.3 - Prob. 41PECh. 14.3 - Prob. 42PECh. 14.3 - Prob. 43PECh. 14.3 - For Exercises 42–49, find the number of terms, n,...Ch. 14.3 - Prob. 45PECh. 14.3 - Prob. 46PECh. 14.3 - Prob. 47PECh. 14.3 - Prob. 48PECh. 14.3 - Prob. 49PECh. 14.3 - Prob. 50PECh. 14.3 - Prob. 51PECh. 14.3 - Prob. 52PECh. 14.3 - Prob. 53PECh. 14.3 - Prob. 54PECh. 14.3 - For Exercises 53–66, find the sum of the...Ch. 14.3 - Prob. 56PECh. 14.3 - Prob. 57PECh. 14.3 - Prob. 58PECh. 14.3 - For Exercises 53–66, find the sum of the...Ch. 14.3 - Prob. 60PECh. 14.3 - Prob. 61PECh. 14.3 - Prob. 62PECh. 14.3 - Prob. 63PECh. 14.3 - Prob. 64PECh. 14.3 - For Exercises 53–66, find the sum of the...Ch. 14.3 - Prob. 66PECh. 14.3 - Find the sum of the first 100 positive integers.Ch. 14.3 - Prob. 68PECh. 14.3 - Prob. 69PECh. 14.3 - A triangular array of dominoes has one domino in...Ch. 14.4 - Prob. 1SPCh. 14.4 - Prob. 2SPCh. 14.4 - Prob. 3SPCh. 14.4 - Prob. 4SPCh. 14.4 - Prob. 5SPCh. 14.4 - Prob. 6SPCh. 14.4 - Prob. 7SPCh. 14.4 - Prob. 8SPCh. 14.4 - 1. a. A ______________sequence is a sequence in...Ch. 14.4 - Prob. 2PECh. 14.4 - Prob. 3PECh. 14.4 - Prob. 4PECh. 14.4 - Prob. 5PECh. 14.4 - Prob. 6PECh. 14.4 - Prob. 7PECh. 14.4 - Prob. 8PECh. 14.4 - Prob. 9PECh. 14.4 - Prob. 10PECh. 14.4 - Prob. 11PECh. 14.4 - Prob. 12PECh. 14.4 - Prob. 13PECh. 14.4 - Prob. 14PECh. 14.4 - Prob. 15PECh. 14.4 - Prob. 16PECh. 14.4 - Prob. 17PECh. 14.4 - Prob. 18PECh. 14.4 - Prob. 19PECh. 14.4 - Prob. 20PECh. 14.4 - For Exercises 19–24, write the first five terms of...Ch. 14.4 - Prob. 22PECh. 14.4 - Prob. 23PECh. 14.4 - For Exercises 19–24, write the first five terms of...Ch. 14.4 - Prob. 25PECh. 14.4 - Prob. 26PECh. 14.4 - Prob. 27PECh. 14.4 - Prob. 28PECh. 14.4 - For Exercises 25–30, find the n th term of each...Ch. 14.4 - Prob. 30PECh. 14.4 - Prob. 31PECh. 14.4 - Prob. 32PECh. 14.4 - Prob. 33PECh. 14.4 - Prob. 34PECh. 14.4 - Prob. 35PECh. 14.4 - Prob. 36PECh. 14.4 - Prob. 37PECh. 14.4 - Prob. 38PECh. 14.4 - Prob. 39PECh. 14.4 - Prob. 40PECh. 14.4 - Prob. 41PECh. 14.4 - If the second and third terms of a geometric...Ch. 14.4 - 43. Explain the difference between a geometric...Ch. 14.4 - Prob. 44PECh. 14.4 - Prob. 45PECh. 14.4 - Prob. 46PECh. 14.4 - Prob. 47PECh. 14.4 - Prob. 48PECh. 14.4 - Prob. 49PECh. 14.4 - Prob. 50PECh. 14.4 - Prob. 51PECh. 14.4 - Prob. 52PECh. 14.4 - For Exercises 47–56, find the sum of the geometric...Ch. 14.4 - For Exercises 47–56, find the sum of the geometric...Ch. 14.4 - For Exercises 47–56, find the sum of the geometric...Ch. 14.4 - For Exercises 47–56, find the sum of the geometric...Ch. 14.4 - Prob. 57PECh. 14.4 - Prob. 58PECh. 14.4 - Prob. 59PECh. 14.4 - Prob. 60PECh. 14.4 - Prob. 61PECh. 14.4 - Prob. 62PECh. 14.4 - Prob. 63PECh. 14.4 - Prob. 64PECh. 14.4 - Prob. 65PECh. 14.4 - Prob. 66PECh. 14.4 - Prob. 67PECh. 14.4 - Prob. 68PECh. 14.4 - Prob. 69PECh. 14.4 - Prob. 70PECh. 14.4 - Prob. 71PECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - Prob. 2PRECh. 14.4 - Prob. 3PRECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - Prob. 5PRECh. 14.4 - Prob. 6PRECh. 14.4 - Prob. 7PRECh. 14.4 - Prob. 8PRECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - Prob. 10PRECh. 14.4 - Prob. 11PRECh. 14.4 - Prob. 12PRECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - Prob. 14PRECh. 14.4 - Prob. 15PRECh. 14.4 - Prob. 16PRECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14 - Prob. 1RECh. 14 - Prob. 2RECh. 14 - Prob. 3RECh. 14 - Prob. 4RECh. 14 - Prob. 5RECh. 14 - Prob. 6RECh. 14 - Prob. 7RECh. 14 - Prob. 8RECh. 14 - Prob. 9RECh. 14 - 10. Find the middle term of the binomial...Ch. 14 - For Exercises 11–14, write the terms of the...Ch. 14 - Prob. 12RECh. 14 - Prob. 13RECh. 14 - Prob. 14RECh. 14 - Prob. 15RECh. 14 - Prob. 16RECh. 14 - Prob. 17RECh. 14 - Prob. 18RECh. 14 - For Exercises 19–20, find the sum of the...Ch. 14 - Prob. 20RECh. 14 - Prob. 21RECh. 14 - Prob. 22RECh. 14 - Prob. 23RECh. 14 - Prob. 24RECh. 14 - Prob. 25RECh. 14 - Prob. 26RECh. 14 - Prob. 27RECh. 14 - Prob. 28RECh. 14 - For Exercises 29–30, find the number of terms. 3 ,...Ch. 14 - Prob. 30RECh. 14 - Prob. 31RECh. 14 - Prob. 32RECh. 14 - For Exercises 33–36, find the sum of the...Ch. 14 - Prob. 34RECh. 14 - Prob. 35RECh. 14 - Prob. 36RECh. 14 - For Exercises 37–38, find the common ratio. 5 , 15...Ch. 14 - Prob. 38RECh. 14 - Prob. 39RECh. 14 - Prob. 40RECh. 14 - Prob. 41RECh. 14 - Prob. 42RECh. 14 - Prob. 43RECh. 14 - Prob. 44RECh. 14 - Prob. 45RECh. 14 - Prob. 46RECh. 14 - Prob. 47RECh. 14 - Prob. 48RECh. 14 - Prob. 49RECh. 14 - Prob. 50RECh. 14 - Prob. 51RECh. 14 - Prob. 1TCh. 14 - Prob. 2TCh. 14 - Prob. 3TCh. 14 - Prob. 4TCh. 14 - Find the sixth term. ( a − c 3 ) 8Ch. 14 - Write the terms of the sequence. a n = − 3 n + 2 ;...Ch. 14 - 7. Find the sum.
Ch. 14 - a. An 8-in. tomato seedling is planted on Sunday....Ch. 14 - Prob. 9TCh. 14 - Find the common difference. 3 , 13 4 , 7 2 , ...Ch. 14 - 11. Find the common ratio.
Ch. 14 - Prob. 12TCh. 14 - Prob. 13TCh. 14 - Prob. 14TCh. 14 - Write an expression for the n th term of the...Ch. 14 - 16. Find the number of terms in the sequence.
Ch. 14 - 17. Find the number of terms in the sequence.
Ch. 14 - Prob. 18TCh. 14 - 19. Find the sum of the geometric series.
Ch. 14 - Prob. 20TCh. 14 - Given a geometric series with a 6 = 9 and r = 3 ,...Ch. 14 - 22. Find the 18th term of the arithmetic sequence...Ch. 14 - Suppose a student smokes one pack of cigarettes...Ch. 14 - Prob. 1CRECh. 14 - Prob. 2CRECh. 14 - Prob. 3CRECh. 14 - Prob. 4CRECh. 14 - Prob. 5CRECh. 14 - Prob. 6CRECh. 14 - Prob. 7CRECh. 14 - Prob. 8CRECh. 14 - Prob. 9CRECh. 14 - Prob. 10CRECh. 14 - Prob. 11CRECh. 14 - Prob. 12CRECh. 14 - Prob. 13CRECh. 14 - For Exercises 14–17, factor completely. 6 a 2 − 17...Ch. 14 - Prob. 15CRECh. 14 - Prob. 16CRECh. 14 - For Exercises 14–17, factor completely. w 3 + 9 w...Ch. 14 - Prob. 18CRECh. 14 - Prob. 19CRECh. 14 - Prob. 20CRECh. 14 - For Exercises 18–25, solve the equation. ( 5 y − 2...Ch. 14 - Prob. 22CRECh. 14 - Prob. 23CRECh. 14 - Prob. 24CRECh. 14 - Prob. 25CRECh. 14 - 26. Write the expression as a single logarithm.
Ch. 14 - 27. Use a calculator to approximate the value of...Ch. 14 - For Exercises 28–32, solve the inequality. Write...Ch. 14 - For Exercises 28–32, solve the inequality. Write...Ch. 14 - Prob. 30CRECh. 14 - For Exercises 28–32, solve the inequality. Write...Ch. 14 - Prob. 32CRECh. 14 - Prob. 33CRECh. 14 - Prob. 34CRECh. 14 - For Exercises 33–35, graph the equation.
35.
Ch. 14 - Graph the solution set. x 2 9 + y 2 25 ≤ 1Ch. 14 - 37. Given
a. Determine the...Ch. 14 - Prob. 38CRECh. 14 - Write an equation of the line passing through the...Ch. 14 - Prob. 40CRECh. 14 - Prob. 41CRECh. 14 - Prob. 42CRECh. 14 - Prob. 43CRECh. 14 - Given the points ( 9 , − 4 ) and ( 3 , 0 ) , a....Ch. 14 - Prob. 45CRECh. 14 - The time t ( n ) (in minutes) required for a rat...Ch. 14 - The speed of a car varies inversely as the time to...Ch. 14 - Prob. 48CRECh. 14 - Prob. 49CRECh. 14 - Against the wind, a plane can travel 4950 mi in 11...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 2. Select all of the polynomials with the degree of 7. A. h(x) = (4x + 2)³(x − 7)(3x + 1)4 B h(x) = (x + 7)³(2x + 1)^(6x − 5)² ☐ Ch(x)=(3x² + 9)(x + 4)(8x + 2)ª h(x) = (x + 6)²(9x + 2) (x − 3) h(x)=(-x-7)² (x + 8)²(7x + 4)³ Scroll down to see more 2 of 10arrow_forward1. If all of the zeros for a polynomial are included in the graph, which polynomial could the graph represent? 100 -6 -2 0 2 100 200arrow_forward3. Select the polynomial that matches the description given: Zero at 4 with multiplicity 3 Zero at −1 with multiplicity 2 Zero at -10 with multiplicity 1 Zero at 5 with multiplicity 5 ○ A. P(x) = (x − 4)³(x + 1)²(x + 10)(x — 5)³ B - P(x) = (x + 4)³(x − 1)²(x − 10)(x + 5)³ ○ ° P(x) = (1 − 3)'(x + 2)(x + 1)"'" (x — 5)³ 51 P(r) = (x-4)³(x − 1)(x + 10)(x − 5 3 of 10arrow_forward
- Match the equation, graph, and description of transformation. Horizontal translation 1 unit right; vertical translation 1 unit up; vertical shrink of 1/2; reflection across the x axis Horizontal translation 1 unit left; vertical translation 1 unit down; vertical stretch of 2 Horizontal translation 2 units right; reflection across the x-axis Vertical translation 1 unit up; vertical stretch of 2; reflection across the x-axis Reflection across the x - axis; vertical translation 2 units down Horizontal translation 2 units left Horizontal translation 2 units right Vertical translation 1 unit down; vertical shrink of 1/2; reflection across the x-axis Vertical translation 2 units down Horizontal translation 1 unit left; vertical translation 2 units up; vertical stretch of 2; reflection across the x - axis f(x) = - =-½ ½ (x − 1)²+1 f(x) = x²-2 f(x) = -2(x+1)²+2 f(x)=2(x+1)²-1 f(x)=-(x-2)² f(x)=(x-2)² f(x) = f(x) = -2x²+1 f(x) = -x²-2 f(x) = (x+2)²arrow_forwardWhat is the vertex, increasing interval, decreasing interval, domain, range, root/solution/zero, and the end behavior?arrow_forwardThe augmented matrix of a linear system has been reduced by row operations to the form shown. Continue the appropriate row operations and describe the solution set of the original system. 1 -1 0 1 -2 00-4 0-6 0 0 1 - 3 3 0 001 4arrow_forward
- Solve the system. X1 - 3x3 = 10 4x1 + 2x2 + 3x3 = 22 ×2 + 4x3 = -2arrow_forwardUse the quadratic formula to find the zeros of the quadratic equation. Y=3x^2+48x+180arrow_forwardM = log The formula determines the magnitude of an earthquake, where / is the intensity of the earthquake and S is the intensity of a "standard earthquake." How many times stronger is an earthquake with a magnitude of 8 than an earthquake with a magnitude of 6? Show your work.arrow_forward
- Now consider equations of the form ×-a=v = √bx + c, where a, b, and c are all positive integers and b>1. (f) Create an equation of this form that has 7 as a solution and an extraneous solution. Give the extraneous solution. (g) What must be true about the value of bx + c to ensure that there is a real number solution to the equation? Explain.arrow_forwardThe equation ×+ 2 = √3x+10 is of the form ×+ a = √bx + c, where a, b, and c are all positive integers and b > 1. Using this equation as a model, create your own equation that has extraneous solutions. (d) Using trial and error with numbers for a, b, and c, create an equation of the form x + a = √bx + c, where a, b, and c are all positive integers and b>1 such that 7 is a solution and there is an extraneous solution. (Hint: Substitute 7 for x, and choose a value for a. Then square both sides so you can choose a, b, and c that will make the equation true.) (e) Solve the equation you created in Part 2a.arrow_forwardA basketball player made 12 out of 15 free throws she attempted. She wants to know how many consecutive free throws she would have to make to raise the percent of successful free throws to 85%. (a) Write an equation to represent this situation. (b) Solve the equation. How many consecutive free throws would she have to make to raise her percent to 85%?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
ALGEBRAIC EXPRESSIONS & EQUATIONS | GRADE 6; Author: SheenaDoria;https://www.youtube.com/watch?v=fUOdon3y1hU;License: Standard YouTube License, CC-BY
Algebraic Expression And Manipulation For O Level; Author: Maths Solution;https://www.youtube.com/watch?v=MhTyodgnzNM;License: Standard YouTube License, CC-BY
Algebra for Beginners | Basics of Algebra; Author: Geek's Lesson;https://www.youtube.com/watch?v=PVoTRu3p6ug;License: Standard YouTube License, CC-BY
Introduction to Algebra | Algebra for Beginners | Math | LetsTute; Author: Let'stute;https://www.youtube.com/watch?v=VqfeXMinM0U;License: Standard YouTube License, CC-BY