Elements Of Modern Algebra
8th Edition
ISBN: 9781285965918
Author: Gilbert
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.4, Problem 9TFE
True or False
Label each of the following statements as either true or false.
The set of all bijections from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
*************
*********************************
Q.1) Classify the following statements as a true or false statements:
a. If M is a module, then every proper submodule of M is contained in a maximal
submodule of M.
b. The sum of a finite family of small submodules of a module M is small in M.
c. Zz is directly indecomposable.
d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M.
e. The Z-module has two composition series.
Z
6Z
f. Zz does not have a composition series.
g. Any finitely generated module is a free module.
h. If O→A MW→ 0 is short exact sequence then f is epimorphism.
i. If f is a homomorphism then f-1 is also a homomorphism.
Maximal C≤A if and only if is simple.
Sup
Q.4) Give an example and explain your claim in each case:
Monomorphism not split.
b) A finite free module.
c) Semisimple module.
d) A small submodule A of a module N and a homomorphism op: MN, but
(A) is not small in M.
I need diagram with solutions
T. Determine the least common
denominator and the domain for the
2x-3
10
problem:
+
x²+6x+8
x²+x-12
3
2x
2. Add:
+
Simplify and
5x+10 x²-2x-8
state the domain.
7
3. Add/Subtract:
x+2 1
+
x+6
2x+2 4
Simplify and state the domain.
x+1
4
4. Subtract:
-
Simplify
3x-3
x²-3x+2
and state the domain.
1
15
3x-5
5. Add/Subtract:
+
2
2x-14
x²-7x
Simplify and state the domain.
Chapter 1 Solutions
Elements Of Modern Algebra
Ch. 1.1 - True or False Label each of the following...Ch. 1.1 - True or False
Label each of the following...Ch. 1.1 - True or False
Label each of the following...Ch. 1.1 - True or False Label each of the following...Ch. 1.1 - Prob. 5TFECh. 1.1 - True or False Label each of the following...Ch. 1.1 - True or False
Label each of the following...Ch. 1.1 - True or False
Label each of the following...Ch. 1.1 - True or False Label each of the following...Ch. 1.1 - True or False Label each of the following...
Ch. 1.1 - Prob. 1ECh. 1.1 - 2. Decide whether or not each statement is true...Ch. 1.1 - Decide whether or not each statement is true. (a)...Ch. 1.1 - 4. Decide whether or not each of the following is...Ch. 1.1 - Prob. 5ECh. 1.1 - 6. Determine whether each of the following is...Ch. 1.1 - Prob. 7ECh. 1.1 - 8. Describe two partitions of each of the...Ch. 1.1 - Prob. 9ECh. 1.1 - Prob. 10ECh. 1.1 - Prob. 11ECh. 1.1 - 12. Let Z denote the set of all integers, and...Ch. 1.1 - 13. Let Z denote the set of all integers, and...Ch. 1.1 - Prob. 14ECh. 1.1 - Prob. 15ECh. 1.1 - In Exercises , prove each statement.
16. If and ,...Ch. 1.1 - In Exercises , prove each statement.
17. if and...Ch. 1.1 - In Exercises , prove each statement.
18.
Ch. 1.1 - Prob. 19ECh. 1.1 - In Exercises 1435, prove each statement. (AB)=ABCh. 1.1 - Prob. 21ECh. 1.1 - Prob. 22ECh. 1.1 - In Exercises 14-35, prove each statement.
23.
Ch. 1.1 - Prob. 24ECh. 1.1 - In Exercise 14-35, prove each statement. If AB,...Ch. 1.1 - In Exercise 14-35, prove each statement.
26. If...Ch. 1.1 - In Exercise 14-35, prove each statement.
27.
Ch. 1.1 - Prob. 28ECh. 1.1 - In Exercises 14-35, prove each statement.
29.
Ch. 1.1 - In Exercises 14-35, prove each statement....Ch. 1.1 - In Exercises 1435, prove each statement....Ch. 1.1 - In Exercises 1435, prove each statement....Ch. 1.1 - In Exercises , prove each statement.
33.
Ch. 1.1 - In Exercises , prove each statement.
34. if and...Ch. 1.1 - In Exercises 1435, prove each statement. AB if and...Ch. 1.1 - Prove or disprove that AB=AC implies B=C.Ch. 1.1 - Prove or disprove that AB=AC implies B=C.Ch. 1.1 - 38. Prove or disprove that .
Ch. 1.1 - Prob. 39ECh. 1.1 - 40. Prove or disprove that .
Ch. 1.1 - Express (AB)(AB) in terms of unions and...Ch. 1.1 - 42. Let the operation of addition be defined on...Ch. 1.1 - 43. Let the operation of addition be as defined in...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - True or False
Label each of the following...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Label each of the following statements as either...Ch. 1.2 - Prob. 1ECh. 1.2 - For each of the following mapping, state the...Ch. 1.2 - 3. For each of the following mappings, write out ...Ch. 1.2 - For each of the following mappings f:ZZ, determine...Ch. 1.2 - 5. For each of the following mappings, determine...Ch. 1.2 - 6. For the given subsets and of Z, let and...Ch. 1.2 - 7. For the given subsets and of Z, let and...Ch. 1.2 - 8. For the given subsets and of Z, let and...Ch. 1.2 - For the given subsets A and B of Z, let f(x)=2x...Ch. 1.2 - For each of the following parts, give an example...Ch. 1.2 - For the given f:ZZ, decide whether f is onto and...Ch. 1.2 - 12. Let and . For the given , decide whether is...Ch. 1.2 - 13. For the given decide whether is onto and...Ch. 1.2 - 14. Let be given by
a. Prove or disprove that ...Ch. 1.2 - 15. a. Show that the mapping given in Example 2...Ch. 1.2 - 16. Let be given by
a. For , find and .
b. ...Ch. 1.2 - 17. Let be given by
a. For find and.
b. For...Ch. 1.2 - 18. Let and be defined as follows. In each case,...Ch. 1.2 - Prob. 19ECh. 1.2 - Prob. 20ECh. 1.2 - In Exercises 20-22, Suppose and are positive...Ch. 1.2 - Prob. 22ECh. 1.2 - Let a and b be constant integers with a0, and let...Ch. 1.2 - 24. Let, where and are nonempty.
Prove that for...Ch. 1.2 - 25. Let, where and are non empty, and let and ...Ch. 1.2 - 26. Let and. Prove that for any subset of T of...Ch. 1.2 - 27. Let , where and are nonempty. Prove that ...Ch. 1.2 - 28. Let where and are nonempty. Prove that ...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - True or False
Label each of the following...Ch. 1.3 - Label each of the following statements as either...Ch. 1.3 - For each of the following pairs and decide...Ch. 1.3 - For each pair given in Exercise 1, decide whether ...Ch. 1.3 - Let . Find mappings and such that.
Ch. 1.3 - Give an example of mappings and such that one of...Ch. 1.3 - Give an example of mapping and different from...Ch. 1.3 - 6. a. Give an example of mappings and , different...Ch. 1.3 - 7. a. Give an example of mappings and , where is...Ch. 1.3 - Suppose f,g and h are all mappings of a set A into...Ch. 1.3 - Find mappings f,g and h of a set A into itself...Ch. 1.3 - Let g:AB and f:BC. Prove that f is onto if fg is...Ch. 1.3 - 11. Let and . Prove that is one-to-one if is...Ch. 1.3 - Let f:AB and g:BA. Prove that f is one-to-one and...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - Label each of the following statements as either...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False
Label each of the following...Ch. 1.4 - True or False Label each of the following...Ch. 1.4 - Prob. 1ECh. 1.4 - In each part following, a rule that determines a...Ch. 1.4 - Prob. 3ECh. 1.4 - Prob. 4ECh. 1.4 - Prob. 5ECh. 1.4 - Prob. 6ECh. 1.4 - 7. Prove or disprove that the set of nonzero...Ch. 1.4 - 8. Prove or disprove that the set of all odd...Ch. 1.4 - 9. The definition of an even integer was stated in...Ch. 1.4 - 10. Prove or disprove that the set of all nonzero...Ch. 1.4 - Prob. 11ECh. 1.4 - Prob. 12ECh. 1.4 - Assume that is an associative binary operation on...Ch. 1.4 - Assume that is a binary operation on a non empty...Ch. 1.4 - 15. Let be a binary operation on the non empty...Ch. 1.4 - Assume that is an associative binary operation on...Ch. 1.5 - True or False Label each of the following...Ch. 1.5 - True or False Label each of the following...Ch. 1.5 - Prob. 3TFECh. 1.5 - For each of the following mappings exhibit a...Ch. 1.5 - 2. For each of the mappings given in Exercise 1,...Ch. 1.5 - Prob. 3ECh. 1.5 - 4. Let , where is nonempty. Prove that a has...Ch. 1.5 - Let f:AA, where A is nonempty. Prove that f a has...Ch. 1.5 - 6. Prove that if is a permutation on , then is a...Ch. 1.5 - Prove that if f is a permutation on A, then...Ch. 1.5 - 8. a. Prove that the set of all onto mappings from...Ch. 1.5 - Let f and g be permutations on A. Prove that...Ch. 1.5 - 10. Let and be mappings from to. Prove that if is...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Label each of the following statements as either...Ch. 1.6 - Prob. 3TFECh. 1.6 - Prob. 4TFECh. 1.6 - Prob. 5TFECh. 1.6 - Prob. 6TFECh. 1.6 - Prob. 7TFECh. 1.6 - Prob. 8TFECh. 1.6 - Prob. 9TFECh. 1.6 - Prob. 10TFECh. 1.6 - Prob. 11TFECh. 1.6 - Label each of the following statements as either...Ch. 1.6 - Write out the matrix that matches the given...Ch. 1.6 - Prob. 2ECh. 1.6 - 3. Perform the following multiplications, if...Ch. 1.6 - Let A=[aij]23 where aij=i+j, and let B=[bij]34...Ch. 1.6 - Prob. 5ECh. 1.6 - Prob. 6ECh. 1.6 - Let ij denote the Kronecker delta: ij=1 if i=j,...Ch. 1.6 - Prob. 8ECh. 1.6 - Prob. 9ECh. 1.6 - Find two nonzero matrices A and B such that AB=BA.Ch. 1.6 - 11. Find two nonzero matrices and such that.
Ch. 1.6 - 12. Positive integral powers of a square matrix...Ch. 1.6 - Prob. 13ECh. 1.6 - Prob. 14ECh. 1.6 - 15. Assume that are in and with and invertible....Ch. 1.6 - Prob. 16ECh. 1.6 - Prob. 17ECh. 1.6 - Prove part b of Theorem 1.35.
Theorem 1.35 ...Ch. 1.6 - Prob. 19ECh. 1.6 - Prob. 20ECh. 1.6 - Suppose that A is an invertible matrix over and O...Ch. 1.6 - Let be the set of all elements of that have one...Ch. 1.6 - Prove that the set S={[abba]|a,b} is closed with...Ch. 1.6 - Prob. 24ECh. 1.6 - Let A and B be square matrices of order n over...Ch. 1.6 - Prob. 26ECh. 1.6 - A square matrix A=[aij]n with aij=0 for all ij is...Ch. 1.6 - Prob. 28ECh. 1.6 - Prob. 29ECh. 1.6 - Prob. 30ECh. 1.6 - Prob. 31ECh. 1.6 - Prob. 32ECh. 1.7 - Label each of the following statements as either...Ch. 1.7 - True or False
Label each of the following...Ch. 1.7 -
True or False
Label each of the following...Ch. 1.7 - Label each of the following statements as either...Ch. 1.7 - True or False
Label each of the following...Ch. 1.7 - Label each of the following statements as either...Ch. 1.7 - For determine which of the following relations...Ch. 1.7 - 2. In each of the following parts, a relation is...Ch. 1.7 - a. Let R be the equivalence relation defined on Z...Ch. 1.7 - 4. Let be the relation “congruence modulo 5”...Ch. 1.7 - 5. Let be the relation “congruence modulo ”...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises 610, a relation R is defined on the...Ch. 1.7 - In Exercises , a relation is defined on the set ...Ch. 1.7 - Let be a relation defined on the set of all...Ch. 1.7 - Let and be lines in a plane. Decide in each case...Ch. 1.7 - 13. Consider the set of all nonempty subsets of ....Ch. 1.7 - In each of the following parts, a relation is...Ch. 1.7 - Let A=R0, the set of all nonzero real numbers, and...Ch. 1.7 - 16. Let and define on by if and only if ....Ch. 1.7 - In each of the following parts, a relation R is...Ch. 1.7 - Let (A) be the power set of the nonempty set A,...Ch. 1.7 - For each of the following relations R defined on...Ch. 1.7 - Give an example of a relation R on a nonempty set...Ch. 1.7 - 21. A relation on a nonempty set is called...Ch. 1.7 - A relation R on a nonempty set A is called...Ch. 1.7 - Prob. 23ECh. 1.7 - For any relation on the nonempty set, the inverse...Ch. 1.7 - Prob. 25ECh. 1.7 - Prob. 26ECh. 1.7 - Prove Theorem 1.40: If is an equivalence relation...Ch. 1.7 - Prob. 28ECh. 1.7 - 29. Suppose , , represents a partition of the...Ch. 1.7 - Suppose thatis an onto mapping from to. Prove that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Q.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardListen ANALYZING RELATIONSHIPS Describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0 and (c) f(x) <0. y Af -2 1 2 4x a. The function is increasing when and decreasing whenarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forwardif a=2 and b=1 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forwardWrite the equation line shown on the graph in slope, intercept form.arrow_forward1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).arrow_forward1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in (0, 1), with x adjacent to y if x and y differ in exactly two positions. Determine the number of components of G.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward1.2.20. (!) Let u be a cut-vertex of a simple graph G. Prove that G - v is connected. עarrow_forward1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit in a connected even graph.arrow_forward1.2.16. Let e be an edge appearing an odd number of times in a closed walk W. Prove that W contains the edges of a cycle through c.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY