A child of mass m sits on top of a rectangular slab of mass M = 35 kg, which in turn rests on the frictionless horizontal floor at a pizza shop. The slab is attached to a horizontal spring with spring constant k = 430 N/m (the other end is attached to an immovable wall. Fig. 14–45). The coefficient of static friction between the child and the top of the slab is μ = 0.40. The shop owner’s intention is that, when displaced from the equilibrium position and released, the slab and child (with no slippage between the two) execute SHM with amplitude A = 0.50 m. Should there be a weight restriction for this ride? If so, what is it? FIGURE 14–45 Problem 90.
A child of mass m sits on top of a rectangular slab of mass M = 35 kg, which in turn rests on the frictionless horizontal floor at a pizza shop. The slab is attached to a horizontal spring with spring constant k = 430 N/m (the other end is attached to an immovable wall. Fig. 14–45). The coefficient of static friction between the child and the top of the slab is μ = 0.40. The shop owner’s intention is that, when displaced from the equilibrium position and released, the slab and child (with no slippage between the two) execute SHM with amplitude A = 0.50 m. Should there be a weight restriction for this ride? If so, what is it? FIGURE 14–45 Problem 90.
A child of mass m sits on top of a rectangular slab of mass M = 35 kg, which in turn rests on the frictionless horizontal floor at a pizza shop. The slab is attached to a horizontal spring with spring constant k = 430 N/m (the other end is attached to an immovable wall. Fig. 14–45). The coefficient of static friction between the child and the top of the slab is μ = 0.40. The shop owner’s intention is that, when displaced from the equilibrium position and released, the slab and child (with no slippage between the two) execute SHM with amplitude A = 0.50 m. Should there be a weight restriction for this ride? If so, what is it?
FIGURE 14–45
Problem 90.
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.