Concept explainers
(a)
The free-body diagram of the forces acting on the ladder.
(a)

Answer to Problem 82PQ
The free-body diagram of the forces acting on the ladder is
Explanation of Solution
A free-body diagram is a graphical tool used to illustrate the different forces acting on a particular object. It helps to solve complex physical problems. The free-body diagram of the ladder in the given situation is drawn in figure 1.
The forces acting on the ladder are the weight, the normal force, the tension and the force of static friction. In the figure weight is represented as
Conclusion:
Thus, the free-body diagram of the forces acting on the ladder is drawn in figure 1.
(b)
The tension in the rope in terms of
(b)

Answer to Problem 82PQ
The tension in the rope in terms of
Explanation of Solution
Take the lower end of the ladder as the pivot point. This will eliminate the torque due to normal force and the torque due to force of static friction.
Since the ladder is in rotational equilibrium, the net torque about the lower end of the ladder must be zero.
Write the condition for the rotational equilibrium.
Here,
Write the equation for
Here,
Put the above equation in equation (I).
Write the expression for
Write the expression for
Write the expression for
Here,
Write the expression for
Here,
Put the above four equations in equation (II) and rewrite it for
Conclusion:
Therefore, the tension in the rope in terms of
(c)
The expression for the tension in the rope in terms of
(c)

Answer to Problem 82PQ
The expression for the tension in the rope in terms of
Explanation of Solution
Since the ladder is in translational equilibrium, the net force in
Write the conditions for the translational equilibrium.
Here,
Here,
Write the equation for
Here,
Write the equation for
Here,
Put the above equation in equation (VI).
Put the above equation in equation (IV) and rewrite it for
Write the equation for
Here,
Write the equation for
Put the above equation in equation (VIII).
Put the above equation in equation (V) and rewrite it for
Put the above equation in equation (VII).
Conclusion:
Therefore, the expression for the tension in the rope in terms of
(d)
The coefficient of static friction in terms of the angle
(d)

Answer to Problem 82PQ
The coefficient of static friction in terms of the angle
Explanation of Solution
Equate equations (III) and (IX).
Conclusion:
Therefore, the coefficient of static friction in terms of the angle
(e)
The after effect of moving the ladder slightly so as to reduce the angle
(e)

Answer to Problem 82PQ
The ladder will slip if it is moved slightly to reduce the angle
Explanation of Solution
The expression for the angle
The expression for the tension force obtained in part (b),
Conclusion:
Thus, the ladder will slip if it is moved slightly to reduce the angle
Want to see more full solutions like this?
Chapter 14 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- Pls help ASAParrow_forward9. When an electron moves into a uniform and perpendicular magnetic field, it will.. a. Accelerate parallel to the magnetic Field until it leaves b. Accelerate in a circular path c. Accelerate perpendicular to both the magnetic field and its original direction d. Repel back into the electric field 10. If a proton at rest is placed in a uniform magnetic field with no electric or gravitational field around, the proton will…….. a. Accelerate in the direction of the magnetic field b. Accelerate in a direction perpendicular to the magnetic field c. Move in a circular path d. Not acceleratearrow_forward7. The electric field at a distance of 1.0 mfrom a charged sphere is 100 N/C. At what distance from thesphere will the electric field be 50 N/C? a. 1.1 m b. 1.4 m c. 2.0 m d. 4.0 m 8. The electric potential due to a point charge at a point depends on a. The direction of the electric field b. The distance from the point charge c. The velocity of the point charge d. The mass of the point chargearrow_forward
- Pls help ASAParrow_forward5. The amount of energy required to move 1 C of charge from one location to another is called.. a. Electrical Potential Energy b. Potential Difference c. Electric Field d. Mechanical Energy 6. If a charge of -q exerts a force of F on a charge +3q, then the charge +3q will exert a force of a. 3F b. -3F on charge -q. C. F d. -Farrow_forwardTwo lenses are separated by 20cm distance each one has focal length |f|=10. Draw the ray diagram and find the finalimage distance if the object is 40cm away from the lens 1 with s1=40cm for the following casesa)First lense is covex the second one is convexb) First one is convex the second one is concavearrow_forward
- 1) A light source is emitting light with 800nm wavelength in a double slit experiment. The separation between the slits is0.01 m and the screen is 5 meters away.a) Find the angle for the fifth and the sixth constructive interferencesb) Find the distance between the third constructive and the third destructive interferences on the screenarrow_forwardA light is passing through a small circular hole with radius 0.002 meters. The third destructive resonance is attheta=0.004 radians. Find the wavelength of the light. Find the angle for the third constructive resonance.arrow_forwardA circular capacitor has 6mm radius. Two parallel plates are 2mm apart. Between the capacitors magnetic field is B=410^-2 Tesla in theta direction at a given time. Calculate the displacement current and change in electric field at thatmomentarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





