a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = 2 x + 3
a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = 2 x + 3
Solution Summary: The author illustrates the graph of the function f(x)=2x+3.
5
Use the method of disks to find the volume of the solid that is obtained
when the region under the curve y = over the interval [4,17] is rotated
about the x-axis.
3. Use the method of washers to find the volume of the solid that is obtained
when the region between the graphs f(x) = √√2 and g(x) = secx over the
interval ≤x≤ is rotated about the x-axis.
4. Use cylindrical shells to find the volume of the solid generated when the
region enclosed by the given curves is revolved about the x-axis.
y = √√x, y = 0, y = √√3
Chapter 1 Solutions
Calculus and Its Applications, Books a la Carte Plus MyLab Math Access Card Package (11th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY