
(a)
Interpretation:
The rate law has to be determined for the given reaction.
Concept introduction:
Rate law: It is an equation that related to the dependence of the
For a reaction,
Where,
A and B are reactants
a and b are
Where,
k is the rate constant
Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.
(a)

Answer to Problem 78GQ
The rate law for the given reaction is
Explanation of Solution
Given information,
The reaction is
Calculate the value of
Therefore, the rate law of the given reaction is
(b)
Interpretation:
The value of rate has to be determined for the given reaction.
Concept introduction:
Rate law: It is an equation that related to the dependence of the reaction rate on the concentration of each substrate (reactants).
For a reaction,
Where,
A and B are reactants
a and b are stoichiometric coefficients
Where,
k is the rate constant
Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.
(b)

Answer to Problem 78GQ
The value of rate constant is
Explanation of Solution
Given information,
The reaction is
Therefore, the rate law of the given reaction is
Calculate the value of rate constant from experiment 1
Therefore, the value of rate constant is
(c)
Interpretation:
The value of rate has to be determined for the given reaction.
Concept introduction:
Rate law: It is an equation that related to the dependence of the reaction rate on the concentration of each substrate (reactants).
For a reaction,
Where,
A and B are reactants
a and b are stoichiometric coefficients
Where,
k is the rate constant
Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.
Rate constant for a particular reaction is always constant. It does not depend on the concentration of the reactant.
(c)

Answer to Problem 78GQ
The value of rate constant is
Explanation of Solution
Given information,
The reaction is
Rate constant for a particular reaction is always constant. It does not depend on the concentration of the reactant.
Hence the rate constant of the given reaction is same the rate constant of
Therefore, the value of rate constant is
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry & Chemical Reactivity
- Steps and explanation please. Add how to solve or target similar problems.arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardThis organic molecule is dissolved in an acidic aqueous solution: OH OH A short time later sensitive infrared spectroscopy reveals the presence of a new C = O stretch absorption. That is, there must now be a new molecule present with at least one C = O bond. In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule. Videos 849 Explanation Check C Click and drag to start dwing a structure. # 3 MAR 23 Add/Remove steparrow_forward||| 7:47 ull 57% ← Problem 19 of 48 Submit Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the product of this carbocation rearrangement. Include all lone pairs and charges as appropriate. H 1,2-alkyl shift +arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardBelow is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide (OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 5th attempt Please draw all four bonds at chiral centers. Draw the two enantiomeric products that will be produced. Draw in any hydrogen at chiral centers. 1000 4th attempt Feedback Please draw all four bonds at chiral centers. 8. R5 HO: See Periodic Table See Hint H Cl Br Jid See Periodic Table See Hintarrow_forwardShow that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.arrow_forward(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.arrow_forwardCan I please get help with #3 & 4? Thanks you so much!arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co