Using a Trigonometric Identity In Exercises 69-74, use the function value to find the indicated trigonometric value in the specified quadrant. Function Value Quadrant Trigonometric Value cot θ = − 3 II csc θ
Using a Trigonometric Identity In Exercises 69-74, use the function value to find the indicated trigonometric value in the specified quadrant. Function Value Quadrant Trigonometric Value cot θ = − 3 II csc θ
Solution Summary: The author calculates the value of the trigonometric function mathrmcsctheta by applying the Pythagorean identity.
Using a Trigonometric Identity In Exercises 69-74, use the function value to find the indicated trigonometric value in the specified quadrant.
Function Value Quadrant Trigonometric Value
cot
θ
=
−
3
II
csc
θ
Equations that give the relation between different trigonometric functions and are true for any value of the variable for the domain. There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant.
Write the equation of the trigonometric
function shown in the graph.
LO
5
4
3
2
1
y
-5
-5
4
8
8
500
-1
-2
-3
-4
-5
x
5
15л
5л
25л
15л
35π
5л
4
8
2
8
4
8
2. If log2 (sin x) + log₂ (cos x) = -2 and log2 (sin x + cos x) = (-2 + log2 n), find n.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.
Fundamental Trigonometric Identities: Reciprocal, Quotient, and Pythagorean Identities; Author: Mathispower4u;https://www.youtube.com/watch?v=OmJ5fxyXrfg;License: Standard YouTube License, CC-BY