Chemistry with Access Code, Hybrid Edition
Chemistry with Access Code, Hybrid Edition
9th Edition
ISBN: 9781285188492
Author: Steven S. Zumdahl
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 68E

A solution is prepared by dissolving 0.56 g benzoic acid (C6H5CO2H, Ka = 6.4 × 10−5) in enough water to make 1.0 L of solution. Calculate [C6H5CO2H], [C6H5CO2], [H+], [OH], and the pH of this solution.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation: The concentration of [C6H5COOH] , [C6H5CO2] , [H+] , [OH] and the pH of the solution, prepared by dissolving 0.56g of benzoic acid in enough water o make 1.0L of the solution, is to be calculated.

Concept introduction: The pH of a solution is define as a figure that expresses the acidity of the alkalinity of a given solution.

The pH of a solution is calculated by the formula, pH=log[H+]

At equilibrium, the equilibrium constant expression is expressed by the formula,

Ka=ConcentrationofproductsConcentrationofreactants

The equilibrium constant for water is denoted by Kw and is expressed as,

Kw=[H+][OH]

The percent dissociation of an acid is calculated by the formula,

Percentdissociation=Equilibriumconcentrationof[H+]Initialconcentrationoftheacid×100

Answer to Problem 68E

Answer

The [H+] and [C6H5COO] is 5.4×10-4M_ . The [C6H5COOH] is 4.1×10-3M_ . The [OH] is 1.8×10-11M_ . The pH of the solution is 3.27_ .

Explanation of Solution

Explanation

To determine: The concentration of [C6H5COOH] , [C6H5CO2] , [H+] , [OH] and the pH of the solution.

The dissociation of C6H5COOH is, C6H5COOH(aq)  H+(aq) + C6H5COO-(aq) 

C6H5COOH is a weak acid. Hence, it does not completely dissociate in water.

C6H5COOH is a comparatively stronger acid than H2O .

The dominant equilibrium reaction for the given case is,

C6H5COOH(aq)H+(aq)+C6H5COO(aq)

At equilibrium, the equilibrium constant expression is expressed by the formula,

Ka=ConcentrationofproductsConcentrationofreactants

Where,

  • Ka is the acid dissociation constant.

The equilibrium constant expression for the given reaction is,

Ka=[H+][C6H5COO][C6H5COOH] (1)

The number of moles of C6H5COOH is 4.59×10-3mol_ .

Given

The given mass of benzoic acid (C6H5COOH) is 0.56g .

The molar mass of C6H5COOH =7C+6H+2O=((7×12)+(6×1)+(2×16))g/mol=122g/mol

The number of moles of a substance is calculated by the formula,

Numberofmoles=GivenmassMolarmass

Substitute the value of the given mass and the molar mass of C6H5COOH in the above expression.

Numberofmoles=0.56g122g/mol=4.59×10-3mol_

The initial [C6H5COOH] is 0.0046M_ .

The calculated number of moles of C6H5COOH is 4.59×103mol .

The total volume is 1.0L .

The concentration is calculated by the formula,

Concentration=NumberofmolesVolume(L)

Substitute the value of the number of moles of C6H5COOH and the volume in the above expression.

Concentration=4.59×103mol1L=0.0046M_

The [H+] and [C6H5COO] is 5.4×10-4M_

The change in concentration of C6H5COOH is assumed to be x .

The ICE table for the stated reaction is,

C6H5COOH(aq)H+(aq)+C6H5COO(aq)Inititialconcentration0.004600Changex+x+xEquilibriumconcentration0.0046xxx

The equilibrium concentration of [C6H5COOH] is (0.0046x)M .

The equilibrium concentration of [H+] is xM .

The equilibrium concentration of [C6H5COO] is xM .

The Ka for C6H5COOH is 6.4×105 .

Substitute the value of Ka , [C6H5COOH] , [H+] and [C6H5COO] in equation (1).

6.4×105=[x][x][0.0046x]6.4×105=[x]2[0.0046x]

The value of x will be very small as compared to 0.0046 . Hence, it is ignored from the term [0.0046x] .

Simplify the above expression.

6.4×105=[x]2[0.0046][x]2=(2.9×107)[x]=5.4×10-4M_

Therefore, the [H+] and [C6H5COO] , that is equal to x is 5.4×10-4M_ .

The [C6H5COOH] is 4.1×10-3M_ .

According to the ICE table formed,

The equilibrium concentration of C6H5COOH is calculated by the formula,

[C6H5COOH]=0.0046x

Substitute the calculated value of x in the above expression.

[C6H5COOH]=(0.00465.4×104)M=4.1×10-3M_

The [OH] is 1.8×10-11M_ .

The equilibrium constant for water is denoted by Kw and is expressed as,

Kw=[H+][OH]

The value of Kw is 1.0×1014 .

The [H+] is 5.4×10-4M .

Substitute the value of Kw and [H+] in the above expression.

1.0×1014=[5.4×10-4M][OH][OH]=1.0×1014[5.4×104M]=1.8×10-11M_

The pH of the solution is 3.27_ .

The calculated value of [H+] is 5.4×104M .

The pH of a solution is calculated by the formula,

pH=log[H+]

Substitute the value of [H+] in the above expression.

pH=log[5.4×104]=3.27_

Conclusion

Conclusion

The [H+] and [C6H5COO] is 5.4×10-4M_ .

The [C6H5COOH] is 4.1×10-3M_ .

The [OH] is 1.8×10-11M_ .

The pH of the solution is 3.27_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT
Please correct answer and don't used hand raiting

Chapter 14 Solutions

Chemistry with Access Code, Hybrid Edition

Ch. 14 - Consider two beakers of pure water at different...Ch. 14 - Differentiate between the terms strength and...Ch. 14 - Sketch two graphs: (a) percent dissociation for...Ch. 14 - Consider a solution prepared by mixing a weak acid...Ch. 14 - Prob. 5ALQCh. 14 - Consider two separate aqueous solutions: one of a...Ch. 14 - You are asked to calculate the H+ concentration in...Ch. 14 - Consider a solution prepared by mixing a weak acid...Ch. 14 - Consider a solution formed by mixing 100.0 mL of...Ch. 14 - A certain sodium compound is dissolved in water to...Ch. 14 - Acids and bases can be thought of as chemical...Ch. 14 - Consider two solutions of the salts NaX(aq) and...Ch. 14 - What is meant by pH? True or false: A strong acid...Ch. 14 - Why is the pH of water at 25C equal to 7.00?Ch. 14 - Can the pH of a solution be negative? Explain.Ch. 14 - Is the conjugate base of a weak acid a strong...Ch. 14 - Match the following pH values: 1, 2, 5, 6, 6.5, 8,...Ch. 14 - The salt BX, when dissolved in water, produces an...Ch. 14 - Anions containing hydrogen (for example, HCO3 and...Ch. 14 - Which of the following conditions indicate an...Ch. 14 - Which of the following conditions indicate a basic...Ch. 14 - Why is H3O+ the strongest acid and OH the...Ch. 14 - How many significant figures are there in the...Ch. 14 - In terms of orbitals and electron arrangements,...Ch. 14 - Consider the autoionization of liquid ammonia:...Ch. 14 - The following are representations of acidbase...Ch. 14 - Give three example solutions that fit each of the...Ch. 14 - Prob. 28QCh. 14 - Prob. 29QCh. 14 - Which of the following statements is(are) true?...Ch. 14 - Consider the following mathematical expressions....Ch. 14 - Consider a 0.10-M H2CO3 solution and a 0.10-M...Ch. 14 - Of the hydrogen halides, only HF is a weak acid....Ch. 14 - Explain why the following are done, both of which...Ch. 14 - Write balanced equations that describe the...Ch. 14 - Write the dissociation reaction and the...Ch. 14 - For each of the following aqueous reactions,...Ch. 14 - For each of the following aqueous reactions,...Ch. 14 - Classify each of the following as a strong acid or...Ch. 14 - Consider the following illustrations: Which beaker...Ch. 14 - Use Table 13-2 to order the following from the...Ch. 14 - Use Table 13-2 to order the following from the...Ch. 14 - You may need Table 13-2 to answer the following...Ch. 14 - You may need Table 13-2 to answer the following...Ch. 14 - Calculate the [OH] of each of the following...Ch. 14 - Calculate the [H+] of each of the following...Ch. 14 - Values of Kw as a function of temperature are as...Ch. 14 - At 40.C the value of Kw is 2.92 1014. a....Ch. 14 - Calculate the [OH] of each of the following...Ch. 14 - Calculate [H+] and [OH] for each solution at 25C....Ch. 14 - Fill in the missing information in the following...Ch. 14 - Fill in the missing information in the following...Ch. 14 - Prob. 53ECh. 14 - The pOH of a sample of baking soda dissolved in...Ch. 14 - What are the major species present in 0.250 M...Ch. 14 - A solution is prepared by adding 50.0 mL of 0.050...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Calculate the concentration of an aqueous HI...Ch. 14 - Calculate the concentration of an aqueous HBr...Ch. 14 - How would you prepare 1600 mL of a pH = 1.50...Ch. 14 - A solution is prepared by adding 50.0 mL...Ch. 14 - What are the major species present in 0.250 M...Ch. 14 - What are the major species present in 0.250 M...Ch. 14 - Calculate the concentration of all species present...Ch. 14 - For propanoic acid (HC3H5O2, Ka = 1.3 105),...Ch. 14 - A solution is prepared by dissolving 0.56 g...Ch. 14 - Monochloroacetic acid, HC2H2ClO2, is a skin...Ch. 14 - A typical aspirin tablet contains 325 mg...Ch. 14 - A solution is made by adding 50.0 mL of 0.200 M...Ch. 14 - Calculate the percent dissociation of the acid in...Ch. 14 - Using the Ka values in Table 14.2, calculate the...Ch. 14 - A 0.15-M solution of a weak acid is 3.0%...Ch. 14 - An acid HX is 25% dissociated in water. If the...Ch. 14 - Trichloroacetic acid (CCl3CO2H) is a corrosive...Ch. 14 - The pH of a 0.063-M solution of hypobromous acid...Ch. 14 - A solution of formic acid (HCOOH, Ka = 1.8 104)...Ch. 14 - A typical sample of vinegar has a pH of 3.0....Ch. 14 - One mole of a weak acid HA was dissolved in 2.0 L...Ch. 14 - You have 100.0 g saccharin, a sugar substitute,...Ch. 14 - Write the reaction and the corresponding Kb...Ch. 14 - Write the reaction and the corresponding Kb...Ch. 14 - Prob. 85ECh. 14 - Use Table 14.3 to help order the following acids...Ch. 14 - Use Table 14.3 to help answer the following...Ch. 14 - Use Table 14.3 to help answer the following...Ch. 14 - Calculate the pH of the following solutions. a....Ch. 14 - Calculate [OH], pOH, and pH for each of the...Ch. 14 - What are the major species present in 0.015 M...Ch. 14 - What are the major species present in the...Ch. 14 - What mass of KOH is necessary to prepare 800.0 mL...Ch. 14 - Calculate the concentration of an aqueous Sr(OH)2...Ch. 14 - What are the major species present in a 0.150-M...Ch. 14 - For the reaction of hydrazine (N2H4) in water,...Ch. 14 - Prob. 97ECh. 14 - Calculate the pH of a 0.20-M C2H5NH2 solution (Kb...Ch. 14 - Calculate the pH of a 0.050-M (C2H5)2NH...Ch. 14 - What is the percent ionization in each of the...Ch. 14 - Calculate the percentage of pyridine (C5H5N) that...Ch. 14 - The pH of a 0.016-M aqueous solution of...Ch. 14 - Calculate the mass of HONH2 required to dissolve...Ch. 14 - Write out the stepwise Ka reactions for the...Ch. 14 - Write out the stepwise Ka reactions for citric...Ch. 14 - A typical vitamin C tablet (containing pure...Ch. 14 - Arsenic acid (H3AsO4) is a triprotic acid with Ka1...Ch. 14 - Calculate the pH and [S2] in a 0.10-M H2S...Ch. 14 - Calculate [CO32] in a 0.010-M solution of CO2 in...Ch. 14 - Calculate the pH of a 2.0-M H2SO4 solution.Ch. 14 - Calculate the pH of a 5.0 103-M solution of...Ch. 14 - Arrange the following 0.10 M solutions in order of...Ch. 14 - Arrange the following 0.10 M solutions in order...Ch. 14 - Given that the Ka value for acetic acid is 1.8 ...Ch. 14 - The Kb values for ammonia and methylamine are 1.8 ...Ch. 14 - Determine [OH], [H+], and the pH of each of the...Ch. 14 - Calculate the concentrations of all species...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Sodium azide (NaN3) is sometimes added to water to...Ch. 14 - Papaverine hydrochloride (abbreviated papH+Cl;...Ch. 14 - An unknown salt is either NaCN, NaC2H3O2, NaF,...Ch. 14 - Consider a solution of an unknown salt having the...Ch. 14 - A 0.050-M solution of the salt NaB has a pH of...Ch. 14 - A 0.20-M sodium chlorobenzoate (NaC7H4ClO2)...Ch. 14 - Prob. 127ECh. 14 - Prob. 128ECh. 14 - Are solutions of the following salts acidic,...Ch. 14 - Are solutions of the following salts acidic,...Ch. 14 - Place the species in each of the following groups...Ch. 14 - Place the species in each of the following groups...Ch. 14 - Place the species in each of the following groups...Ch. 14 - Using your results from Exercise 133, place the...Ch. 14 - Will the following oxides give acidic, basic, or...Ch. 14 - Will the following oxides give acidic, basic, or...Ch. 14 - Identify the Lewis acid and the Lewis base in each...Ch. 14 - Identify the Lewis acid and the Lewis base in each...Ch. 14 - Aluminum hydroxide is an amphoteric substance. It...Ch. 14 - Zinc hydroxide is an amphoteric substance. Write...Ch. 14 - Would you expect Fe3+ or Fe2+ to be the stronger...Ch. 14 - Prob. 142ECh. 14 - A 10.0-mL sample of an HCl solution has a pH of...Ch. 14 - Which of the following represent conjugate...Ch. 14 - A solution is tested for pH and conductivity as...Ch. 14 - The pH of human blood is steady at a value of...Ch. 14 - Hemoglobin (abbreviated Hb) is a protein that is...Ch. 14 - A 0.25-g sample of lime (CaO) is dissolved in...Ch. 14 - At 25C, a saturated solution of benzoic acid (Ka =...Ch. 14 - Calculate the pH of an aqueous solution containing...Ch. 14 - Acrylic acid (CH29CHCO2H) is a precursor for many...Ch. 14 - Classify each of the following as a strong acid,...Ch. 14 - The following illustration displays the relative...Ch. 14 - Quinine (C20H24N2O2) is the most important...Ch. 14 - Codeine (C18H21NO3) is a derivative of morphine...Ch. 14 - A codeine-containing cough syrup lists codeine...Ch. 14 - Prob. 157AECh. 14 - Rank the following 0.10 M solutions in order of...Ch. 14 - Is an aqueous solution of NaHSO4 acidic, basic, or...Ch. 14 - Calculate the value for the equilibrium constant...Ch. 14 - Prob. 161AECh. 14 - For solutions of the same concentration, as acid...Ch. 14 - Prob. 163CWPCh. 14 - Consider a 0.60-M solution of HC3H5O3, lactic acid...Ch. 14 - Consider a 0.67-M solution of C2H5NH2 (Kb = 5.6 ...Ch. 14 - Rank the following 0.10 M solutions in order of...Ch. 14 - Consider 0.25 M solutions of the following salts:...Ch. 14 - Calculate the pH of the following solutions: a....Ch. 14 - Consider 0.10 M solutions of the following...Ch. 14 - The pH of 1.0 108 M hydrochloric acid is not...Ch. 14 - Calculate the pH of a 1.0 107-M solution of NaOH...Ch. 14 - Calculate [OH] in a 3.0 107-M solution of Ca(OH)2.Ch. 14 - Consider 50.0 mL of a solution of weak acid HA (Ka...Ch. 14 - Prob. 174CPCh. 14 - Calculate the pH of a 0.200-M solution of C5H5NHF....Ch. 14 - Determine the pH of a 0.50-M solution of NH4OCl....Ch. 14 - Calculate [OH] in a solution obtained by adding...Ch. 14 - What mass of NaOH(s) must be added to 1.0 L of...Ch. 14 - Consider 1000. mL of a 1.00 104-M solution of a...Ch. 14 - Calculate the mass of sodium hydroxide that must...Ch. 14 - Consider the species PO43, HPO42, and H2PO4. Each...Ch. 14 - Calculate the pH of a 0.10-M solution of sodium...Ch. 14 - Will 0.10 M solutions of the following salts be...Ch. 14 - a. The principal equilibrium in a solution of...Ch. 14 - A 0.100-g sample of the weak acid HA (molar mass =...Ch. 14 - A sample containing 0.0500 mole of Fe2(SO4)3 is...Ch. 14 - A 2.14 g sample of sodium hypoiodite is dissolved...Ch. 14 - Isocyanic acid (HNCO) can be prepared by heating...Ch. 14 - A certain acid, HA, has a vapor density of 5.11...Ch. 14 - An aqueous solution contains a mixture of 0.0500 M...Ch. 14 - For the following, mix equal volumes of one...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY