
Concept explainers
(a)
The speed of the bob.
(a)

Explanation of Solution
Introduction:
In the simple pendulum, there is the bob that has mass and is hanged from the string that has the certain length. When the bob is displaced from the equilibrium position the string follows forth and the back motion which is known as the periodic motion.
Write the expression to relate the speed of the bob with the angular speed.
Here,
Write the expression for the angular position with respect to time.
Here,
Differentiate the above equation with respect to time.
Substitute
Write the expression for the velocity.
Here, is the maximum velocity.
Equate equation (2) and (3) for
Solve the above equation for
Write the expression for the angular velocity.
Here,
Substitute
Conclusion:
Thus, the speed of the bob is
(b)
The speed of the bob.
(b)

Explanation of Solution
Introduction:
In the simple pendulum, there is the bob that has mass and is hanged from the string that has the certain length. When the bob is displaced from the equilibrium position the string follows forth and the back motion which is known as the periodic motion.
Write the expression for the conservation for the energy.
Here,
The initial kinetic energy and final potential energy are zero.
Substitute
Write the expression for the kinetic energy.
Here,
Write the expression for the potential energy.
Substitute
Write the expression for the height.
Substitute
Solve the above equation for
Conclusion:
Thus, the speed of the bob is
(c)
The speed of the bob.
(c)

Explanation of Solution
Introduction:
In the simple pendulum, there is the bob that has mass and is hanged from the string that has the certain length. When the bob is displaced from the equilibrium position the string follows forth and the back motion which is known as the periodic motion.
Write the expression for the velocity.
Write the expression for the small angle.
Substitute
Conclusion:
Thus, the speed of the bob is
(d)
The difference in the speeds of the bob.
(d)

Explanation of Solution
Given:
The length is
The angle is
Formula used:
Write the expression for the change in velocity.
Substitute
Calculation:
Substitute
Conclusion:
Thus, the difference in the speed of the bob is
(e)
The difference in the speed of the bob.
(e)

Explanation of Solution
Given:
The length is
The angle is
Formula used:
Write the expression for the change in velocity.
Substitute
Calculation:
Substitute
Conclusion:
Thus, the difference in the velocity of the bob is
Want to see more full solutions like this?
Chapter 14 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





