
Concept explainers
(a)
The distance travelled by the particle during the time
(a)

Explanation of Solution
Given:
The time period of the particle is
The amplitude of the oscillation of the particle is
Formula used:
The position of the particle is given as:
Here,
Write the expression for the angular frequency of oscillation.
Substitute
Write the expression for the initial position of the particle with amplitude and phase constant.
Simplify the above equation we get.
Substitute
Substitute
Now the distance particle travels in initial time
Calculation:
Substitute
Conclusion:
The distance the particle travels at
(b)
The distance travelled by the particle at time
(b)

Explanation of Solution
Given:
The time period of the particle is
The amplitude of the oscillation of the particle is
Formula used:
The position of the particle is given as:
Here,
Calculation:
Substitute
Conclusion:
The position of the particle is
(c)
The distance travelled by the particle
(c)

Explanation of Solution
Given:
The time period of the particle is
The amplitude of the oscillation of the particle is
Formula used:
The position of the particle is given as:
Calculation:
Substitute
Conclusion:
The position of the particle is
(d)
The distance travelled by the particle
(d)

Explanation of Solution
Given:
The time period of the particle is
The amplitude of the oscillation of the particle is
Formula used:
The position of the particle is given as:
Calculation:
Substitute
Conclusion:
The position of the particle is
Want to see more full solutions like this?
Chapter 14 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





