Concept explainers
Interpretation:
Each of the given base is to be classified as a strong or weak base.
Concept Introduction:
Acids and bases can each be categorized as strong or weak, depending on how much they ionize or dissociate in their aqueous solution.
The strong bases ionize completely in aqueous solution, thus, they are called strong electrolyte and their ionization are shown by a single arrow pointing to the right in the reaction equation.
The ionization of weak bases does not occur completely, thus, they are called weak electrolyte and their ionization are shown by two opposing arrows pointing to the right as well as left in the reaction equation.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Introductory Chemistry Plus MasteringChemistry with eText - Access Card Package (5th Edition) (New Chemistry Titles from Niva Tro)
- Vitamin C has the formula C6H8O6. Besides being an acid, it is a reducing agent. One method for determining the amount of vitamin C in a sample is to titrate it with a solution of bromine, Br2, an oxidizing agent. C6H8O6(aq) + Br2(aq) 2 HBr(aq) + C6H6O6(aq) A 1.00-g "chewable" vitamin C tablet requires 27.85 ml of 0.102 M Br2 for titration to the equivalence point. What is the mass of vitamin C in the tablet?arrow_forward3.85 The particulate drawing shown represents an aqueous so- lution of an acid HA, where A might represent an atom or group of atoms. Is HA a strong acid or a weak acid? Explain how you can tell from the picture.arrow_forwardWhat is the net ionic equation for the reaction of acetic acid and sodium hydroxide? (a) H3O+(aq) + OH(aq) 2 H2O(l) (b) Na+(aq) + CH3CO2(aq) NaCH3CO2(aq) (c) CH3CO2H(aq) + OH(aq) H2O(l) + CH3CO2(aq) (d) CH3CO2H(aq) + NaOH(aq) H2O(l) NaCH3CO2(aq)arrow_forward
- One half liter (500. mL) of 2.50 M HCl is mixed with 250. mL of 3.75 M HCl. Assuming the total solution volume after mixing is 750. mL, what is the concentration of hydrochloric acid in the resulting solution? What is its pH?arrow_forwardCalculate the concentrations of each ion present in a solution that results from mixing 50.0 mL of a 0.20 M NaClO3(aq) solution with 25.0 mL of a 0.20 M Na2SO4 (aq) solution. Assume that the volumes are additive.arrow_forwardEqual quantities of the hypothetical strong acid HX, weak acid HA, and weak base BZ are added to separate beakers of water, producing the solutions depicted in the drawings. In the drawings, the relative amounts of each substance present in the solution (neglecting the water) are shown. Identify the acid or base that was used to produce each of the solutions (HX, HA, or BZ).arrow_forward
- Complete the right side of each of the following molecular equations. Then write the net ionic equations. Assume all salts formed are soluble. Acid salts are possible. a Ca(OH)2(aq) + 2H2SO4(aq) b 2H3PO4(aq) + Ca(OH)2(aq) c NaOH(aq) + H2SO4(aq) d Sr(OH)2(aq) + 2H2CO3(aq)arrow_forwardA solution of sodium cyanide, NaCN, has a pH of 12.10. How many grams of NaCN are in 425 mL of a solution with the same pH?arrow_forwardEqual amounts (moles) of HCl(aq) and NaCN(aq) are mixed. The resulting solution is (a) acidic (b) basic (c) neutralarrow_forward
- Calcium carbonate, CaCO3, can be obtained in a very pure state. Standard solutions of calcium ion are usually prepared by dissolving calcium carbonate in acid. What mass of CaCO3 should be taken to prepare 500. mL of 0.0200 M calcium ion solution?arrow_forwardTwo liters of a 1.5 M solution of sodium hydroxide are needed for a laboratory experiment. A stock solution of 5.0 M NaOH is available. How is the desired solution prepared?arrow_forwardA mountain lake that is 4.0 km × 6.0 km with an average depth of 75 m has an H+(aq) concentration of 1.3 × 10−6 M. Calculate the mass of calcium carbonate that would have to be added to the lake to change the H+(aq) concentration to 6.3 × 10−8 M. Assume that all the carbonate is converted to carbon dioxide, which bubbles out of the solution.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning