Conduction through the skin. The blood plays an important role in removing heat from the body by bringing this heat directly to the surface where it can radiate away. Nevertheless, this heat must still travel through the skin before it can radiate away. We shall assume that the blood is brought to the bottom layer of skin at a temperature of 37°C and that the outer surface of the skin is at 30.0°C. Skin varies in thickness from 0.50 mm to a few millimeters on the palms and soles, so we shall assume an average thickness of 0.75 mm. A 165 lb, 6 ft person has a surface area of about 2.0 m 2 and loses heat at a net rate of 75 W while resting. On the basis of our assumptions, what is the thermal conductivity of this person’s skin?
Conduction through the skin. The blood plays an important role in removing heat from the body by bringing this heat directly to the surface where it can radiate away. Nevertheless, this heat must still travel through the skin before it can radiate away. We shall assume that the blood is brought to the bottom layer of skin at a temperature of 37°C and that the outer surface of the skin is at 30.0°C. Skin varies in thickness from 0.50 mm to a few millimeters on the palms and soles, so we shall assume an average thickness of 0.75 mm. A 165 lb, 6 ft person has a surface area of about 2.0 m 2 and loses heat at a net rate of 75 W while resting. On the basis of our assumptions, what is the thermal conductivity of this person’s skin?
Conduction through the skin. The blood plays an important role in removing heat from the body by bringing this heat directly to the surface where it can radiate away. Nevertheless, this heat must still travel through the skin before it can radiate away. We shall assume that the blood is brought to the bottom layer of skin at a temperature of 37°C and that the outer surface of the skin is at 30.0°C. Skin varies in thickness from 0.50 mm to a few millimeters on the palms and soles, so we shall assume an average thickness of 0.75 mm. A 165 lb, 6 ft person has a surface area of about 2.0 m2 and loses heat at a net rate of 75 W while resting. On the basis of our assumptions, what is the thermal conductivity of this person’s skin?
2
C01: Physical Quantities, Units and Measurementscobris alinu zotinUD TRO
Bendemeer Secondary School
Secondary Three Express Physics
Chpt 1: Physical Quantities, Unit and Measurements Assignment
Name: Chen ShiMan
loov neowled soria
25
( 03 ) Class: 3 Respect 6 Date: 2025.01.22
1
Which group consists only of scalar quantities?
ABCD
A
acceleration, moment and energy store
distance, temperature and time
length, velocity and current
mass, force and speed
B
D.
B
Which diagram represents the resultant vector of P and Q? lehtele
시
bas siqpeq olarist of beau eldeo qirie-of-qi
P
A
C
-B
qadmis
rle mengaib priwollot erT S
Quilons of qira ono mont aboog
eed indicator
yh from West
eril to Inioqbim srij
enisinoo MA
(6)
08 bas 8A aldao ni nolent or animaleb.gniweb slepe eld
260 km/h
D
1
D.
e
51
The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0
s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s?
a (m/s²)
as
-2
0
2
t(s)
4
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN.
P
125 kN
B
125 kN
C
0.9 m
1.2 m
The smallest allowable value of the diameter d₁ is
The smallest allowable value of the diameter d₂ is
mm.
mm.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.