Introducing Chemistry
6th Edition
ISBN: 9780134557373
Author: Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 52E
What volume in milliliters of a 0.0985 M sodium hydroxide solution is required to reach the equivalence point in the complete titration of a 15.0-mL sample of 0.124 M phosphoric acid?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What volume of base is required to reach the equivalence point in a titration of 20.00 mL of 0.11 M nitric acid with 0.25 M sodium hydroxide?
A 0.1310 g sample of an unknown diprotic acid is diluted to 100.00 mL and titrated by using 0.1910
M NaOH. If 14.20 ml of the NaOH solution is required to reach the second equivalence point, what
is the molar mass of the acid?
2.
25.00 mL of an unknown acidic solution is titrated with 0.198 M NaOH solution.
Exactly 22.34 mL of the NaOH solution is needed to reach the equivalence point.
What is the concentration of the unknown solution?
Chapter 14 Solutions
Introducing Chemistry
Ch. 14 - Which substance is most likely to have a bitter...Ch. 14 - Identity the Brnsted-Lowry base in the reaction....Ch. 14 - What is the conjugate base of the acid HClO4 ? a....Ch. 14 - Prob. 4SAQCh. 14 - Q5. What are the products of the reaction between...Ch. 14 - A 25.00-mL sample of an HNO3 solution is titrated...Ch. 14 - In which solution is [H3O+] less than 0.100 M? a....Ch. 14 - Prob. 8SAQCh. 14 - Prob. 9SAQCh. 14 - What is the pH of a solution with [H3O+]=2.8105M ?...
Ch. 14 - What is [OH] in a solution with a pH of 9.55 ? a....Ch. 14 - A buffer contains HCHO2(aq) and KCHO2(aq). Which...Ch. 14 - 1. What makes tart gummy candies, such as Sour...Ch. 14 - What are the properties of acids? List some foods...Ch. 14 - 3. What is the main component of stomach acid? Why...Ch. 14 - Prob. 4ECh. 14 - What are the properties of bases? Provide some...Ch. 14 - Prob. 6ECh. 14 - Restate the Arrhenius definition of an acid and...Ch. 14 - Prob. 8ECh. 14 - 9. Restate the Brønsted-Lowry definitions of acids...Ch. 14 - Prob. 10ECh. 14 - What is an acidbase neutralization reaction?...Ch. 14 - Prob. 12ECh. 14 - Prob. 13ECh. 14 - 14. Name a metal that a base can dissolve and...Ch. 14 - What is titration? What is the equivalence point?Ch. 14 - Prob. 16ECh. 14 - What is the difference between a strong acid and a...Ch. 14 - Prob. 18ECh. 14 - Prob. 19ECh. 14 - Prob. 20ECh. 14 - Does pure water contain any H3O+ ions? Explain...Ch. 14 - Prob. 22ECh. 14 - 23. Give a possible value of and in a solution...Ch. 14 - 24. How is pH defined? A change of 1.0 pH unit...Ch. 14 - 25. How is pOH defined? A change of 2.0 pOH units...Ch. 14 - Prob. 26ECh. 14 - What is a buffer?Ch. 14 - Prob. 28ECh. 14 - Identify each substance as an acid or a base and...Ch. 14 - 30. Identify each substance as an acid or a base...Ch. 14 - 31. For each reaction, identify the Brønsted-Lowry...Ch. 14 - For each reaction, identify the Brnsted-Lowry...Ch. 14 - Determine whether each pair is a conjugate...Ch. 14 - Determine whether each pair is a conjugate...Ch. 14 - Write the formula for the conjugate base of each...Ch. 14 - Prob. 36ECh. 14 - 37. Write the formula for the conjugate acid of...Ch. 14 - Prob. 38ECh. 14 - Write a neutralization reaction for each acid and...Ch. 14 - Write a neutralization reaction for each acid and...Ch. 14 - 41. Write a balanced chemical equation showing how...Ch. 14 - Prob. 42ECh. 14 - Prob. 43ECh. 14 - Prob. 44ECh. 14 - Prob. 45ECh. 14 - Prob. 46ECh. 14 - 47. Four solutions of unknown HCl concentration...Ch. 14 - 48. Four solutions of unknown NaOH concentration...Ch. 14 - 49. A 25.00-mL sample of an solution of unknown...Ch. 14 - 50. A 5.00-mL sample of an solution of unknown...Ch. 14 - What volume in milliliters of a 0.121 M sodium...Ch. 14 - 52. What volume in milliliters of a 0.0985 M...Ch. 14 - Prob. 53ECh. 14 - 54. Classify each acid as strong or...Ch. 14 - Prob. 55ECh. 14 - Determine [H3O+] in each acid solution. If the...Ch. 14 - Prob. 57ECh. 14 - Prob. 58ECh. 14 - Prob. 59ECh. 14 - Prob. 60ECh. 14 - 61. Determine if each solution is acidic, basic,...Ch. 14 - Prob. 62ECh. 14 - Calculate [OH] given [H3O+] in each aqueous...Ch. 14 - Calculate [OH] given [H3O+] in each aqueous...Ch. 14 - Calculate [H3O+] given [OH] in each aqueous...Ch. 14 - 66. Calculate given in each aqueous solution and...Ch. 14 - 67. Classify each solution as acidic, basic, or...Ch. 14 - Prob. 68ECh. 14 - 69. Calculate the pH of each...Ch. 14 - Calculate the pH of each solution. a....Ch. 14 - 71. Calculate of each solution.
a.
b.
c.
d.
Ch. 14 - 72. Calculate of each solution.
a.
b.
c.
d.
Ch. 14 - Prob. 73ECh. 14 - Prob. 74ECh. 14 - 75. Calculate of each solution.
a.
b.
c.
d.
Ch. 14 - 76. Calculate of each solution.
a.
b.
c.
d.
Ch. 14 - Calculate the pH of each solution: a. 0.0155MHBr...Ch. 14 - Prob. 78ECh. 14 - Determine the pOH of each solution and classify it...Ch. 14 - Determine the pOH of each solution and classify it...Ch. 14 - Determine the pOH of each solution. a....Ch. 14 - Prob. 82ECh. 14 - Prob. 83ECh. 14 - Prob. 84ECh. 14 - 85. Determine whether or not each mixture is a...Ch. 14 - Determine whether or not each mixture is a buffer....Ch. 14 - Prob. 87ECh. 14 - 88. Write reactions showing how each of the...Ch. 14 - Prob. 89ECh. 14 - Which substance could you add to each solution to...Ch. 14 - 91. How much 0.100 M HCl is required to completely...Ch. 14 - How much 0.200 M KOH is required to completely...Ch. 14 - What is the minimum volume of 5.0 M HCl required...Ch. 14 - What is the minimum volume of 3.0 M HBr required...Ch. 14 - Prob. 95ECh. 14 - Prob. 96ECh. 14 - A 0.125-g sample of a monoprotic acid of unknown...Ch. 14 - Prob. 98ECh. 14 - 99. People take antacids, such as milk of...Ch. 14 - An antacid tablet requires 25.82 mL of 200 M HCl...Ch. 14 - Prob. 101ECh. 14 - Prob. 102ECh. 14 - Complete the table. (The first row is completed...Ch. 14 - Prob. 104ECh. 14 - Prob. 105ECh. 14 - Prob. 106ECh. 14 - 107. For each strong base solution, determine , ...Ch. 14 - Prob. 108ECh. 14 - 109. As described in Section 14.1, jailed spies on...Ch. 14 - Prob. 110ECh. 14 - 111. What is the pH of a solution formed by mixing...Ch. 14 - Prob. 112ECh. 14 - 113. How many (or ) ions are present in one drop...Ch. 14 - Prob. 114ECh. 14 - Prob. 115ECh. 14 - Prob. 116ECh. 14 - Prob. 117ECh. 14 - Prob. 118ECh. 14 - Prob. 119ECh. 14 - Choose an example of a reaction featuring a...Ch. 14 - 121. Divide your group in two. Have each half of...Ch. 14 - Prob. 122QGWCh. 14 - With group members acting as atoms or ions, act...Ch. 14 - Data Interpretation and Analysis
124. The progress...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Explain how to choose the appropriate acid-base indicator for the titration of a weak base with a strong acid.arrow_forwardAnother way to treat data from a pH titration is to graph the absolute value of the change in pH per change in milliliters added versus milliliters added (pH/mL versus mL added). Make this graph using your results from Exercise 61. What advantage might this method have over the traditional method for treating titration data?arrow_forwardFollow the directions of Question 64. Consider two beakers: Beaker A has a weak acid(K a=1105). Beaker B has HCI. The volume and molarity of each acid in the beakers are the same. Both acids are to be titrated with a 0.1 M solution of NaOH. (a) Before titration starts (at zero time), the pH of the solution in Beaker A is the pH of the solution in Beaker B. (b) At half-neutralization (halfway to the equivalence point), the pH of the solution in Beaker A the pH of the solution in Beaker B. (c) When each solution has reached its equivalence point, the pH of the solution in Beaker A the pH of the solution in Beaker B. (d) At the equivalence point, the volume of NaOH used to titrate HCI in Beaker B the volume of NaOH used to titrate the weak acid in Beaker A.arrow_forward
- You are given the following acidbase titration data, where each point on the graph represents the pH after adding a given volume of titrant (the substance being added during the titration). a What substance is being titrated, a strong acid, strong base, weak acid, or weak base? b What is the pH at the equivalence point of the tiration? c What indicator might you use to perform this titration? Explain.arrow_forwardTwo samples of 1.00 M HCl of equivalent volumes are prepared. One sample is titrated to the equivalence point with a 1.00 M solution of sodium hydroxide, while the other sample is titrated to the equivalence point with a 1.00 M solution of calcium hydroxide. a Compare the volumes of sodium hydroxide and calcium hydroxide required to reach the equivalence point for each titration. b Determine the pH of each solution halfway to the equivalence point. c Determine the pH of each solution at the equivalence point.arrow_forwardA bottle of concentrated hydroiodic acid is 57% HI by weight and has a density of 1.70 g/mL. A solution of this strong and corrosive acid is made by adding exactly 10.0 mL to some water and diluting to 250.0 mL. If the information on the label is correct, what volume of 0.988 M NaOH is needed to neutralize the HI solution? Suggest an indicator for the titration.arrow_forward
- A 2.500-g sample of a mixture of sodium carbonate and sodium chloride is dissolved in 25.00 mL of 0.798 M HCl. Some acid remains after the treatment of the sample. a Write the net ionic equation for the complete reaction of sodium carbonate with hydrochloric acid b If 28.7 mL of 0.108 M NaOH were required to titrate the excess hydrochloric acid, how many moles of sodium carbonate were present in the original sample? c What is the percent composition of the original sample?arrow_forwardDescribe how the amount of sodium hydroxide in a mixture can be determined by titration with hydrochloric acid of known molarity.arrow_forwardA quantity of 0.15 M hydrochloric acid is added to a solution containing 0.10 mol of sodium acetate. Some of the sodium acetate is converted to acetic acid, resulting in a final volume of 650 mL of solution. The pH of the final solution is 4.56. a What is the molar concentration of the acetic acid? b How many milliliters of hydrochloric acid were added to the original solution? c What was the original concentration of the sodium acetate?arrow_forward
- One half liter (500. mL) of 2.50 M HCl is mixed with 250. mL of 3.75 M HCl. Assuming the total solution volume after mixing is 750. mL, what is the concentration of hydrochloric acid in the resulting solution? What is its pH?arrow_forwardExplain why the hydrolysis of salts makes it necessary to have available in a laboratory more than one acid-base indicator for use in titrations.arrow_forwardFour different substances of the generalized formula HA were dissolved in water, with the results shown in the diagrams. Which of the diagrams represents the substance that is the strongest electrolyte?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY