Concept explainers
A 35.00-mL sample of 0.487 M KBrO is titrated with 0.264 M HNO3.
(b) How many milliliters of HCl are required to reach the equivalence point?
(c) What is the pH at the equivalence point?
(d) Calculate [K+], [NO3-], [H+], [BrO-], and [HBrO] at the equivalence point. (Assume volumes are additive.)
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
PRINCIPLES+REACTIONS
- A buffer is prepared by dissolving 0.0250 mol of sodium nitrite, NaNO2, in 250.0 mL of 0.0410 M nitrous acid, HNO2. Assume no volume change after HNO2 is dissolved. Calculate the pH of this buffer.arrow_forwardKa for formic acid is 1.7 104 at 25C. A buffer is made by mixing 529 mL of 0.465 M formic acid, HCHO2, and 494 mL of 0.524 M sodium formate, NaCHO2. Calculate the pH of this solution at 25C after 110 mL of 0.152 M HCl has been added to this buffer.arrow_forwardA solution is prepared by dissolving 0.350 g of benzoic acid, HC7H5O2, in water to make 100.0 mL of solution. A 30.00-mL sample of the solution is titrated with 0.272 M KOH. Calculate the pH of the solution (a) before titration. (b) halfway to the equivalence point. (c) at the equivalence point.arrow_forward
- What is the pH of the solution obtained by titrating 1.30 g of sodium hydrogen sulfate, NaHSO4, dissolved in 50.0 mL of water with 0.175 M sodium hydroxide until the equivalence point is reached? Assume that any volume change due to adding the sodium hydrogen sulfate or to mixing the solutions is negligible.arrow_forwardWhich compound in each pair is more soluble in water than is predicted by a calculation from Ksp? (a) AgI or Ag2CO3 (b) PbCO3 or PbCl2 (c) AgCl or AgCNarrow_forwardWhat is the pH of a solution that consists of 0.20 M ammonia, NH3, and 0.20 M ammonium chloride, NH4Cl?arrow_forward
- When a diprotic acid, H2A, is titrated with NaOH, the protons on the diprotic acid are generally removed one at a time, resulting in a pH curve that has the following generic shape: a. Notice that the plot has essentially two titration curves. If the first equivalence point occurs at 100.0 mL NaOH added, what volume of NaOH added corresponds to the second equivalence point? b. For the following volumes of NaOH added, list the major species present after the OH reacts completely. i. 0 mL NaOH added ii. between 0 and 100.0 mL NaOH added iii. 100.0 mL NaOH added iv. between 100.0 and 200.0 mL NaOH added v. 200.0 mL NaOH added vi. after 200.0 mL NaOH added c. If the pH at 50.0 mL NaOH added is 4.0, and the pH at 150.0 mL NaOH added is 8.0, determine the values Ka1, and Ka2 for the diprotic acid.arrow_forwardCalculate the mass of sodium acetate, NaCH3COO, you should add to 500. mL of a 0.150-M solution of acetic acid, CH3COOH, to buffer a solution at a pH of 4.57.arrow_forwardA solution NH3 that contains 72 mL of 0.043 M ammonia, NH3, is titrated with 0.083 M HCl. The Kb of ammonia is 1.8x10-5. (a) What volume of 0.083 M HCI would be added to reach the equivalence point? Give the volume in mL. 49 37 mL (b) At the equivalence point, what is the pH of the solution? (Assume that volumes are additive.) 40 8.98 X whawhat "at onubralence point" implies about the quantities of the combined acids and bases? Did you rememberarrow_forward
- Determine the pH during the titration of 67.3 mL of 0.459 M hypochlorous acid (K 3.5x108) by 0.459 M NaOH at the following points. (Assume the titration is done at 25 °C.) (a) Before the addition of any NaOH X (b) After the addition of 17.0 mL of NaOH X t (c) At the half-equivalence point (the titration midpoint) (d) At the equivalence point x pt (e) After the addition of 101 mL of NaOH 12.95 pt pt Xarrow_forwardA buffer solution was prepared that contained 0.60 M hydrogen fluoride, HF (Ka = 7.2 x 104) and 1.00M potassium fluoride, KF. The total volume was 250 mL. (a) What ions and molecules are present in the solution? List them in order of decreasing concentration: Decreasing order of Concentration (b) What is the pH of the buffer solution described above? (c) What is the pH of 100. mL of the buffer solution if you add 100. x 10-3 g of NaOH? Assume negligible change in volume. (USEFUL INFORMATION: MM NaOH = 39.997 g mol-1)arrow_forwardYou are asked to prepare a pH = 3.00 buffer solution startingfrom 1.25 L of a 1.00 M solution of hydrofluoric acid(HF) and any amount you need of sodium fluoride (NaF).(a) What is the pH of the hydrofluoric acid solution priorto adding sodium fluoride? (b) How many grams of sodiumfluoride should be added to prepare the buffer solution?Neglect the small volume change that occurs when the sodiumfluoride is added.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning