EBK PRACTICAL MANAGEMENT SCIENCE
5th Edition
ISBN: 9780100655065
Author: ALBRIGHT
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 46P
a)
Summary Introduction
To determine: The relationship between units shipped and monthly shipping cost.
Introduction: Simulation model is the digital prototype of the physical model that helps to
b)
Summary Introduction
To determine: Whether the error pattern is unusual.
Introduction: Simulation model is the digital prototype of the physical model that helps to forecast the performance of the system or model in the real world.
c)
Summary Introduction
To determine: The effect of trucking strike on part (a) and part (b).
Introduction: Simulation model is the digital prototype of the physical model that helps to forecast the performance of the system or model in the real world.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pharmacist has been monitoring sales of a certain over-the-counter pain reliever. Daily sales duringthe last 15 days wereDay: 1 2 3 4 5 6 7 8 9Number sold: 36 38 42 44 48 49 50 49 52Day: 10 11 12 13 14 15Number sold: 48 52 55 54 56 57a. Which method would you suggest using to predict future sales—a linear trend equation or trendadjustedexponential smoothing? Why?b. If you learn that on some days the store ran out of the specific pain reliever, would that knowledgecause you any concern? Explain.c. Assume that the data refer to demand rather than sales. Using trend-adjusted smoothing with aninitial forecast of 50 for week 8, an initial trend estimate of 2, and .3, develop forecastsfor days 9 through 16. What is the MSE for the eight forecasts for which there are actual data?
A pharmacist has been monitoring sales of a certain over-the-counter pain reliever. Daily sales during the last 15 days were as follows:Day 1 2 3 4 5 6 7 8 9Number sold 36 38 42 44 48 49 50 49 52Day 10 11 12 13 14 15Number sold 48 52 55 54 56 57a. Which method would you suggest using to predict future sales—a linear trend equation or trend-adjusted exponential smoothing? Why?
b. If you learn that on some days the store ran out of the specific pain reliever, would that knowledge cause you any concern? Explain
c. Assume that the data refer to demand rather than sales. Using trend-adjusted smoothing with an initial forecast of 50 for day 8, an initial trend estimate of 2, and α = β = .3, develop forecasts for days 9 through 16. What is the MSE for the eight forecasts for which there are actual data?
The following table shows a company's annual revenue (in billions of dollars) for 2009 to 2014.
Year
Period (t)
Revenue ($ billions)
2009
1
23.8
2010
29.2
2011
37.9
2012
4
50.3
2013
59.8
2014
6
66.6
(a) Construct a time series plot.
80
80
70
70
70
70
60
60
50
50
50
30
30
30
30-
20
20
20
20
10
10
10 -
10-
4.
6
7
4
6
4
5
6
7
1
2.
4
6
7
Period
Period
Period
Period
What type of pattern exists in the data?
O The time series plot shows an upward linear trend.
O The time series plot shows a downward curvilinear trend.
O The time series plot shows a downward linear trend.
O The time series plot shows an upward curvilinear trend.
(b) Develop a linear trend equation for this time series to forecast revenue (in billions of dollars). (Round your numerical values to three decimal places.)
T =
(c) What is the average revenue increase per year (in billions of dollars) that this company has been realizing? (Round your answer to three decimal places.)
billion
Revenue ($ billions)
Revenue ($ billions)…
Chapter 14 Solutions
EBK PRACTICAL MANAGEMENT SCIENCE
Ch. 14.3 - Prob. 1PCh. 14.3 - Prob. 2PCh. 14.3 - Prob. 3PCh. 14.3 - Prob. 4PCh. 14.3 - Prob. 5PCh. 14.3 - Prob. 6PCh. 14.3 - Prob. 7PCh. 14.3 - Prob. 8PCh. 14.3 - Prob. 9PCh. 14.3 - Prob. 10P
Ch. 14.4 - Prob. 12PCh. 14.4 - Prob. 13PCh. 14.4 - Prob. 14PCh. 14.4 - Prob. 15PCh. 14.4 - Prob. 16PCh. 14.4 - Prob. 17PCh. 14.6 - Prob. 19PCh. 14.6 - Prob. 20PCh. 14.6 - The file P14_21.xlsx contains the weekly sales of...Ch. 14.6 - Prob. 22PCh. 14.7 - Prob. 23PCh. 14.7 - Prob. 24PCh. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - Prob. 28PCh. 14.7 - Prob. 29PCh. 14.7 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - Prob. 32PCh. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Prob. 35PCh. 14 - Prob. 36PCh. 14 - Prob. 37PCh. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Prob. 42PCh. 14 - Prob. 43PCh. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 49P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- The Baker Company wants to develop a budget to predict how overhead costs vary with activity levels. Management is trying to decide whether direct labor hours (DLH) or units produced is the better measure of activity for the firm. Monthly data for the preceding 24 months appear in the file P13_40.xlsx. Use regression analysis to determine which measure, DLH or Units (or both), should be used for the budget. How would the regression equation be used to obtain the budget for the firms overhead costs?arrow_forwardThe file P13_20.xlsx contains the monthly sales of iPod cases at an electronics store for a two-year period. Use the moving averages method, with spans of your choice, to forecast sales for the next six months. Does this method appear to track sales well? If not, what might be the reason?arrow_forwardThe file P13_22.xlsx contains total monthly U.S. retail sales data. While holding out the final six months of observations for validation purposes, use the method of moving averages with a carefully chosen span to forecast U.S. retail sales in the next year. Comment on the performance of your model. What makes this time series more challenging to forecast?arrow_forward
- The file P13_02.xlsx contains five years of monthly data on sales (number of units sold) for a particular company. The company suspects that except for random noise, its sales are growing by a constant percentage each month and will continue to do so for at least the near future. a. Explain briefly whether the plot of the series visually supports the companys suspicion. b. By what percentage are sales increasing each month? c. What is the MAPE for the forecast model in part b? In words, what does it measure? Considering its magnitude, does the model seem to be doing a good job? d. In words, how does the model make forecasts for future months? Specifically, given the forecast value for the last month in the data set, what simple arithmetic could you use to obtain forecasts for the next few months?arrow_forwardThe file P13_26.xlsx contains the monthly number of airline tickets sold by the CareFree Travel Agency. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b?arrow_forwardThe file P13_21.xlsx contains the weekly sales of rakes at a hardware store for a two-year period. Use the moving averages method, with spans of your choice, to forecast sales for the next 30 weeks. Does this method appear to track sales well? If not, what might be the reason?arrow_forward
- Stock market analysts are continually looking for reliable predictors of stock prices. Consider the problem of modeling the price per share of electric utility stocks (Y). Two variables thought to influence this stock price are return on average equity (X1) and annual dividend rate (X2). The stock price, returns on equity, and dividend rates on a randomly selected day for 16 electric utility stocks are provided in the file P13_15.xlsx. Estimate a multiple regression equation using the given data. Interpret each of the estimated regression coefficients. Also, interpret the standard error of estimate and the R-square value for these data.arrow_forwardThe file P13_19.xlsx contains the weekly sales of a particular brand of paper towels at a supermarket for a one-year period. a. Using a span of 3, forecast the sales of this product for the next 10 weeks with the moving averages method. How well does this method with span 3 forecast the known observations in this series? b. Repeat part a with a span of 10. c. Which of these two spans appears to be more appropriate? Justify your choice.arrow_forwardThe file P13_28.xlsx contains monthly retail sales of U.S. liquor stores. a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forward
- Management of a home appliance store would like to understand the growth pattern of the monthly sales of Blu-ray disc players over the past two years. Managers have recorded the relevant data in the file P13_33.xlsx. a. Create a scatterplot for these data. Comment on the observed behavior of monthly sales at this store over time. b. Estimate an appropriate regression equation to explain the variation of monthly sales over the given time period. Interpret the estimated regression coefficients. c. Analyze the estimated equations residuals. Do they suggest that the regression equation is adequate? If not, return to part b and revise your equation. Continue to revise the equation until the results are satisfactory.arrow_forwardThe file P13_29.xlsx contains monthly time series data for total U.S. retail sales of building materials (which includes retail sales of building materials, hardware and garden supply stores, and mobile home dealers). a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardSuppose that a regional express delivery service company wants to estimate the cost of shipping a package (Y) as a function of cargo type, where cargo type includes the following possibilities: fragile, semifragile, and durable. Costs for 15 randomly chosen packages of approximately the same weight and same distance shipped, but of different cargo types, are provided in the file P13_16.xlsx. a. Estimate a regression equation using the given sample data, and interpret the estimated regression coefficients. b. According to the estimated regression equation, which cargo type is the most costly to ship? Which cargo type is the least costly to ship? c. How well does the estimated equation fit the given sample data? How might the fit be improved? d. Given the estimated regression equation, predict the cost of shipping a package with semifragile cargo.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License