Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
5th Edition
ISBN: 9780137488179
Author: Douglas Giancoli
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(I) How long must a simple pendulum be if it is to make exactly one swing per second? (That is, one complete oscillation takes exactly 2.0 s.)
(III) A clock pendulum oscillates at a frequency of 2.5 Hz.At t=0 it is released from rest starting at an angle of 12°to the vertical. Ignoring friction, what will be the position(angle in radians) of the pendulum at (a) t=0.25s(b) t=1.60s and (c) t=500s
How long must a simple pendulum be if it is to make exactly one swing per seven seconds? (That is, one complete oscillation takes exactly 14 ss.)
Chapter 14 Solutions
Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
Ch. 14.1 - A mass is oscillating on a frictionless surface at...Ch. 14.1 - If an oscillating mass has a frequency of 1.25 Hz,...Ch. 14.2 - By how much should the mass on the end of a spring...Ch. 14.2 - The position of a SHO is given by x = (0.80 m)...Ch. 14.3 - Suppose the spring in Fig. 1410 is compressed to x...Ch. 14.5 - Return to the Chapter-Opening Question, p. 369,...Ch. 14.5 - If a simple pendulum is taken from sea level to...Ch. 14 - Give some examples of everyday vibrating objects....Ch. 14 - Is the acceleration of a simple harmonic...Ch. 14 - Real springs have mass. Will the true period and...
Ch. 14 - How could you double the maximum speed of a simple...Ch. 14 - A 5.0-kg trout is attached to the hook of a...Ch. 14 - If a pendulum clock is accurate at sea level, will...Ch. 14 - A tire swing hanging from a branch reaches nearly...Ch. 14 - For a simple harmonic oscillator, when (if ever)...Ch. 14 - Prob. 9QCh. 14 - Does a car bounce on its springs faster when it is...Ch. 14 - Prob. 11QCh. 14 - A thin uniform rod of mass m is suspended from one...Ch. 14 - What is the approximate period of your walking...Ch. 14 - A tuning fork of natural frequency 264 Hz sits on...Ch. 14 - Why can you make water slosh back and forth in a...Ch. 14 - Give several everyday examples of resonance.Ch. 14 - Prob. 17QCh. 14 - Over the years, buildings have been able to be...Ch. 14 - Prob. 1MCQCh. 14 - Prob. 2MCQCh. 14 - Prob. 3MCQCh. 14 - Prob. 4MCQCh. 14 - Prob. 5MCQCh. 14 - Prob. 6MCQCh. 14 - Prob. 7MCQCh. 14 - Prob. 8MCQCh. 14 - Prob. 9MCQCh. 14 - Prob. 10MCQCh. 14 - Prob. 11MCQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - (II) Construct a Table, indicating the position x...Ch. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - (II) An object of unknown mass m is hung from a...Ch. 14 - (II) Figure 1429 shows two examples of SHM,...Ch. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - Prob. 21PCh. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - (III) A mass m is at rest on the end of a spring...Ch. 14 - (III) A mass m is connected to two springs, with...Ch. 14 - Prob. 26PCh. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - Prob. 32PCh. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Prob. 35PCh. 14 - Prob. 36PCh. 14 - Prob. 37PCh. 14 - Prob. 38PCh. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Prob. 42PCh. 14 - Prob. 43PCh. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - (II) Derive a formula for the maximum speed vmax...Ch. 14 - Prob. 49PCh. 14 - Prob. 50PCh. 14 - Prob. 51PCh. 14 - (II) (a) Determine the equation of motion (for as...Ch. 14 - (II) A meter stick is hung at its center from a...Ch. 14 - Prob. 55PCh. 14 - (II) A student wants to use a meter stick as a...Ch. 14 - (II) A plywood disk of radius 20.0cm and mass...Ch. 14 - (II) Estimate how the damping constant changes...Ch. 14 - Prob. 63PCh. 14 - Prob. 65PCh. 14 - Prob. 67PCh. 14 - (II) (a) For a forced oscillation at resonance ( =...Ch. 14 - Prob. 69PCh. 14 - (III) By direct substitution, show that Eq. 1422,...Ch. 14 - Prob. 75GPCh. 14 - Prob. 77GPCh. 14 - A 0.650-kg mass oscillates according to the...Ch. 14 - Prob. 83GPCh. 14 - An oxygen atom at a particular site within a DNA...Ch. 14 - A seconds pendulum has a period of exactly 2.000...Ch. 14 - Prob. 87GPCh. 14 - Prob. 89GPCh. 14 - Carbon dioxide is a linear molecule. The...Ch. 14 - A mass attached to the end of a spring is...Ch. 14 - Imagine that a 10-cm-diameter circular hole was...Ch. 14 - In Section 145, the oscillation of a simple...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the speed of the observer is increased by 5.0%, what is the period of the pendulum when measured by this observer?arrow_forwardA simple pendulum as shown in Fig. 4.24 oscillates back and forth. Use the letter designations in the figure to identify the pendulums position(s) for the following conditions. (There may be more than one answer. Consider the pendulum to be ideal with no energy losses.) (a) Position(s) of instantaneous rest ___ (b) Position(s) of maximum velocity ___ (c) Position(s) of maximum Ek ___ (d) Position(s) of maximum Ep ___ (e) Position(s) of minimum Ek ___ (f) Position(s) of minimum Ep ___ (g) Position(s) after which Ek increases ___ (h) Position(s) after which Ep increases ___ (i) Position(s) after which Ek decreases ___ (j) Position(s) after which Ep decreases ___ Figure 4.24 The Simple Pendulum and Energyarrow_forwardCheck Your Understanding Identify one way you could decrease the maximum velocity of a simple harmonic oscillator.arrow_forward
- Check Your Understanding An engineer builds two simple pendulums. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10 kg. Pendulum 2 has a bob with a mass of 100 kg. Describe how the motion of the pendulums will differ if the bobs are both displaced by 12°.arrow_forwardWe do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forward(II) If one oscillation has 3.0 times the energy of a secondone of equal frequency and mass, what is the ratio of theiramplitudes ?arrow_forward
- (b) An oscillating pendulum has length 0.3 m and 240 g bob. If the total energy is 0.06 J, calculate the amplitude of the oscillation.arrow_forwardHow long must a simple pendulum be if it is to make exactly one swing per seven seconds? (That is, one complete oscillation takes exactly 14 s.)arrow_forward(b) An oscillating pendulum has length 0.3 m and 240 g bob. If the total energy is 0.06 J, calculate the amplitude of the oscillation. Satu handularrow_forward
- (5) The periodic time of the physical pendulum is (4n*k/gl), where k is the radius of gyration.arrow_forward(4) Due to the shape of the earth - in fact, it is not a perfect sphere - the acceleration due to gravity increases when latitude increases. If the pendulum is taken from the equator (latitude = 0°) to the North or South Pole (latitude = 90°), describe the changes that would take place with respect to the period of the pendulum and the accuracy of the clock (i.e., would the clock run too fast or too slow) and why.arrow_forwardAccording to Eq. (21), the amplitude of forced steady periodic oscillations for the system mx" + cx' + kx = Fo cos ot is given by Fo C(@) = V(k – mo²)2 + (co)² (a) If c 2 Cer/2, where cer = V4km, show that C steadily decreases as w increases. (b) If c < cer//2, show that C attains a maximum value (practical reso- nance) when c2 < wo = 2m2 w = Wm =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY