Concept explainers
Carbon dioxide is a linear molecule. The carbon-oxygen bonds in this molecule act very much like springs. Figure 14–43 shows one possible way the oxygen atoms in this molecule can oscillate: the oxygen atoms oscillate symmetrically in and out, while the central carbon atom remains at rest. Hence each oxygen atom acts like a simple harmonic oscillator with a mass equal to the mass of an oxygen atom. It Is observed that this oscillation occurs with a frequency of f = 2.83 × 1013 Hz. What is the spring constant of the C — O bond?
FIGURE 14–43
Problem 86, the CO2 molecule.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Cosmic Perspective Fundamentals
Anatomy & Physiology (6th Edition)
College Physics: A Strategic Approach (3rd Edition)
Microbiology: An Introduction
- If the amplitude of a damped oscillator decreases to 1/e of its initial value after n periods, show that the frequency of the oscillator must be approximately [1 − (8π2n2)−1] times the frequency of the corresponding undamped oscillator.arrow_forwardAn automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to the road for every additional 100 kg of passengers. It is driven with a constant horizontal component of speed 20 km/h over a washboard road with sinusoidal bumps. The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. The distance between the front and back wheels is 2.4 m. Find the amplitude of oscillation of the automobile, assuming it moves vertically as an undamped driven harmonic oscillator. Neglect the mass of the wheels and springs and assume that the wheels are always in contact with the road.arrow_forwardMost harmonic oscillators are damped and, if undriven, eventually come to a stop. Why?arrow_forward
- Consider the simplified single-piston engine in Figure CQ15.13. Assuming the wheel rotates with constant angular speed, explain why the piston rod oscillates in simple harmonic motion.arrow_forwardDetermine the angular frequency of oscillation of a thin, uniform, vertical rod of mass m and length L pivoted at the point O and connected to two springs (Fig. P16.78). The combined spring constant of the springs is k(k = k1 + k2), and the masses of the springs are negligible. Use the small-angle approximation (sin ). FIGURE P16.78arrow_forwardIn an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forward
- Refer to the problem of the two coupled oscillators discussed in Section 12.2. Show that the total energy of the system is constant. (Calculate the kinetic energy of each of the particles and the potential energy stored in each of the three springs, and sum the results.) Notice that the kinetic and potential energy terms that have 12 as a coefficient depend on C1 and 2 but not on C2 or 2. Why is such a result to be expected?arrow_forwardIf the speed of the observer is increased by 5.0%, what is the period of the pendulum when measured by this observer?arrow_forwardA grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forward
- A simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forwardTwo masses m1 = 100 g and m2 = 200 g slide freely in a horizontal frictionless track and are connected by a spring whose force constant is k = 0.5 N/m. Find the frequency of oscillatory motion for this system.arrow_forwardThe total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning