Concept explainers
Review. Assume a certain liquid, with density 1 230 kg/m3, exerts no friction force on spherical objects. A ball of mass 2.10 kg and radius 9.00 cm is dropped from rest into a deep tank of this liquid from a height of 3.30 m above the surface. (a) Find the speed at which the hall enters the liquid. (b) Evaluate the magnitudes of the two forces that are exerted on the ball as it moves through the liquid. (c) Explain why the ball moves down only a limited distance into the liquid and calculate this distance. (d) With what speed will the ball pop up out of the liquid? (c) How does the time interval ∆tdown, during which the ball moves from the surface down to its lowest point, compare with the lime interval ∆tup for the return trip between the same two points? (f) What If? Now modify the model to suppose the liquid exerts a small friction force on the ball, opposite in direction to its motion. In this case, how do the time intervals ∆tdown and ∆tup compare? Explain your answer with a conceptual argument rather than a numerical calculation.
(a)
The speed of the ball which enters the liquid.
Answer to Problem 36AP
The speed of the ball which enters the liquid is
Explanation of Solution
The density of the liquid is
By the conservation of energy,
Here,
Substitute
Conclusion:
Therefore, the speed of the ball which enters the liquid is
(b)
The magnitudes of the two forces that are exerted on the ball as move through liquid.
Answer to Problem 36AP
The magnitude of the gravitational force that is exerted on the ball as move through liquid is
Explanation of Solution
Formula to calculate the gravitational force or weight of the ball is,
Here,
Substitute
Thus, the gravitational force exerted on the ball is
The buoyant force exerted on the ball is equal to the volume of water displaced by the ball.
Formula to calculate the buoyant force exerted on the ball is,
Here,
Formula to calculate the volume of the spherical ball is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the magnitudes of the gravitational force that are exerted on the ball as move through liquid is
(c)
The distance covered by the ball in water.
Answer to Problem 36AP
The distance covered by the ball in water is
Explanation of Solution
The buoyant force exerted on the ball is greater than the weight of the ball, therefore the ball certain distance covered inside the water because it changes the direction of motion.
From third law of motion,
Here,
Formula to calculate the acceleration of the ball is,
Formula to calculate the net force acting on a ball is,
Substitute
Substitute
Substitute
The negative sign shows direction of the ball in downward direction.
Conclusion:
Therefore, the distance covered by the ball in water is
(d)
The speed of the ball pop up out of the liquid.
Answer to Problem 36AP
The speed of the ball which enters the liquid is
Explanation of Solution
The speed of the ball which enters the liquid is equal to the speed of the ball pop up out of the liquid because absence of friction, no energy losses occur in this system. Hence the speed of the ball pop up out of the liquid is
Conclusion:
Therefore, the speed will the ball pop up out of the liquid is
(e)
The result of comparison the time interval during which the ball moves from the surface to its lowest point with the time interval for return trip at the same point.
Answer to Problem 36AP
The time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point.
Explanation of Solution
The time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point because ball going down and up acceleration of the ball and distance covered by the ball is same.
Conclusion:
Therefore, the time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point.
(f)
Compare the time interval during which the ball moves from the surface to its lowest point with the time interval for return trip at the same point.
Answer to Problem 36AP
The time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point.
Explanation of Solution
The time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point when friction is present because energy losses by the system.
Conclusion:
Therefore, the time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point.
Want to see more full solutions like this?
Chapter 14 Solutions
PHYSICS FOR SCI & ENGR W WEBASSIGN
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Fundamentals Of Thermodynamics
Applications and Investigations in Earth Science (9th Edition)
Genetics: From Genes to Genomes
Fundamentals of Anatomy & Physiology (11th Edition)
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- pls helparrow_forwardpls helparrow_forward6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forward
- No chatgpt plsarrow_forwardWhat is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forwardՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forward
- Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forwardPhys 22arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning