
Concept explainers
A small metal ball with a charge of +0.08 C and a mass of 25 g (0.025 kg) enters a region where there is a magnetic field of 0.5 T. The ball is traveling with a velocity of 110 m/s in a direction perpendicular to the magnetic field, as shown in this problem's diagram.
a. What is the magnitude of the magnetic force acting on the ball?
b. What is the direction of the magnetic force exerted on the ball when it is at the position shown?
c. Will this force change the magnitude of the velocity of the ball? Explain.
d. From Newton’s second law, what is the magnitude of the acceleration of the charged hall?
e. Because centripetal acceleration is equal to v2/r, what is the radius of the curve the ball will move through under the influence of the magnetic force?
(a)

The magnitude of magnetic force on the ball.
Answer to Problem 2SP
Magnetic force on the ball is
Explanation of Solution
Given Info The charge of metal ball is
Write the equation for Lorentz magnetic force acting on ball moves in direction perpendicular to magnetic field.
Here,
Substitute
Conclusion:
Therefore, the force is
(b)

The direction of magnetic force on the ball.
Answer to Problem 2SP
Magnetic force acts into the page.
Explanation of Solution
Direction of magnetic force on ball is given by the right hand thumb rule. If the index finger denotes the direction of motion of ball, middle finger represents the direction of magnetic field; right hand thumb represents the direction of magnetic force. Force which is perpendicular to both velocity and magnetic field points into the page.
Conclusion:
Therefore, the Magnetic force acts into the page.
(c)

To Check: Whether the force on ball can change the velocity of ball or not.
Answer to Problem 2SP
Yes. Force on ball can change the velocity of ball.
Explanation of Solution
Magnetic force acting on the ball is perpendicular to both the direction of motion and magnetic field. This force put the ball in circular motion. The necessary centripetal force is provided by the magnetic force calculated in part (a).
In a circular motion, direction of motion is changing at every instant. This means even the speed of ball is constant, there will be a change in velocity.
Conclusion:
Therefore, the force on ball can change the velocity of ball.
(d)

The acceleration of charged ball.
Answer to Problem 2SP
The acceleration of ball is
Explanation of Solution
Given Info The charge of metal ball is
Write the formula to calculate the acceleration of ball.
Here,
Substitute
Conclusion:
Therefore, the acceleration of ball is
(e)

The radius of circular path which ball moves under the influence of magnetic field.
Answer to Problem 2SP
The radius of circular path is
Explanation of Solution
Given Info The charge of metal ball is
Write the equation for centripetal acceleration.
Here,
Rewrite the above relation in terms of
Substitute
Conclusion:
Therefore, the radius of circular path is
Want to see more full solutions like this?
Chapter 14 Solutions
Physics of Everyday Phenomena
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





