
Concept explainers
Two long parallel wires carry currents of 8 A and 12 A in opposite directions, as shown in this problem’s diagram. The distance between the wires is 4 cm.
a. What is the magnitude of the force per unit length exerted by one wire on the other?
b. What are the directions of the forces on each wire?
c. What is the total force exerted on a 30-cm length of the 12 A wire?
d. From this force, compute the strength of the magnetic field produced by the 8 A wire at the position of the 12 A wire (F = IlB).
e. What is the direction of the magnetic field produced by the 8 A wire at the position of the 12 A wire?
(a)

The magnitude of magnetic force per unit length exerted by one on other.
Answer to Problem 1SP
The force is
Explanation of Solution
Given Info The current through the wires are
Write the formula to calculate the magnetic force per unit length between two parallel current carrying wires.
Here,
Substitute
Conclusion:
Therefore, the force is
(b)

The direction of force exerted by one on the other wire.
Answer to Problem 1SP
The force will be perpendicular to both current and magnetic field.
Explanation of Solution
The direction of magnetic force exerted by one on other can be found using right hand thumb rule. Use right hand to find the direction. Let the index finger point in direction of current flow, middle finger points in direction of magnetic field, direction of magnetic force is given by the right hand thumb.
From the above rule, it is clear that the force acts in perpendicular direction to both current and magnetic field. Since the current flow through wires are in opposite directions, direction of force exerted by one other will be also opposite.
Conclusion:
Therefore, the force will be perpendicular to both current and magnetic field.
(c)

The magnetic force exerted on wire with current
Answer to Problem 1SP
The force is
Explanation of Solution
Given Info The current through the wires are
Write the formula to calculate the magnetic force between two parallel current carrying wires.
Substitute
Conclusion:
Therefore, the force is
(d)

The magnetic field produced by
Answer to Problem 1SP
The magnetic field is
Explanation of Solution
Given Info: The current through the wires are
Write the formula to calculate magnetic field from magnetic force.
Substitute
Conclusion:
Therefore, the magnetic field is
(e)

The direction of magnetic field produced by
Answer to Problem 1SP
The magnetic field is perpendicular to plane of the page and points into the page.
Explanation of Solution
The direction of magnetic field due to current flow is given by right hand thumb rule. If right hand’s thumb points in direction of current flow, curled fingers represent the direction of magnetic field.
If right hand thumb points in direction given below, curled fingers points into the page. Thus, magnetic field produced by
Conclusion:
The magnetic field is perpendicular to plane of the page and points into the page.
Want to see more full solutions like this?
Chapter 14 Solutions
Physics of Everyday Phenomena
- 2. Two equally strong individuals, wearing exactly the same shoes decide to do a tug of war. The only difference is individual A is 2.5 meters tall and individual B is 1.5 meter tall. Who is more likely to win the tug of war?arrow_forward6. A car drives at steady speed around a perfectly circular track. (a) The car's acceleration is zero. (b) The net force on the car is zero. (c) Both the acceleration and net force on the car point outward. (d) Both the acceleration and net force on the car point inward. (e) If there is no friction, the acceleration is outward.arrow_forward9. A spring has a force constant of 100 N/m and an unstretched length of 0.07 m. One end is attached to a post that is free to rotate in the center of a smooth. table, as shown in the top view in the figure below. The other end is attached to a 1kg disc moving in uniform circular motion on the table, which stretches the spring by 0.03 m. Friction is negligible. What is the centripetal force on the disc? Top View (a) 0.3 N (b) 3.0 N (c) 10 N (d) 300 N (e) 1000 Narrow_forward
- 4. A child has a ball on the end of a cord, and whirls the ball in a vertical circle. Assuming the speed of the ball is constant (an approximation), when would the tension in the cord be greatest? (a) At the top of the circle. (b) At the bottom of the circle. (c) A little after the bottom of the circle when the ball is climbing. (d) A little before the bottom of the circle when the ball is descending quickly. (e) Nowhere; the cord is pulled the same amount at all points.arrow_forward3. In a rotating vertical cylinder (Rotor-ride) a rider finds herself pressed with her back to the rotating wall. Which is the correct free-body diagram for her? (a) (b) (c) (d) (e)arrow_forward8. A roller coaster rounds the bottom of a circular loop at a nearly constant speed. At this point the net force on the coaster cart is (a) zero. (b) directed upward. (c) directed downward. (d) Cannot tell without knowing the exact speed.arrow_forward
- 5. While driving fast around a sharp right turn, you find yourself pressing against the left car door. What is happening? (a) Centrifugal force is pushing you into the door. (b) The door is exerting a rightward force on you. (c) Both of the above. (d) Neither of the above.arrow_forward7. You are flung sideways when your car travels around a sharp curve because (a) you tend to continue moving in a straight line. (b) there is a centrifugal force acting on you. (c) the car exerts an outward force on you. (d) of gravity.arrow_forward1. A 50-N crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50. A 20-N force is applied to the crate acting to the right. What is the resulting static friction force acting on the crate? (a) 20 N to the right. (b) 20 N to the left. (c) 25 N to the right. (d) 25 N to the left. (e) None of the above; the crate starts to move.arrow_forward
- 3. The problem that shall not be named. m A (a) A block of mass m = 1 kg, sits on an incline that has an angle 0. Find the coefficient of static friction by analyzing the system at imminent motion. (hint: static friction will equal the maximum value) (b) A block of mass m = 1kg made of a different material, slides down an incline that has an angle 0 = 45 degrees. If the coefficient of kinetic friction increases is μ = 0.5 what is the acceleration of the block? karrow_forward2. Which of the following point towards the center of the circle in uniform circular motion? (a) Acceleration. (b) Velocity, acceleration, net force. (c) Velocity, acceleration. (d) Velocity, net force. (e) Acceleration, net force.arrow_forwardProblem 1. (20 pts) The third and fourth stages of a rocket are coastin in space with a velocity of 18 000 km/h when a smal explosive charge between the stages separate them. Immediately after separation the fourth stag has increased its velocity to v4 = 18 060 km/h. Wha is the corresponding velocity v3 of the third stage At separation the third and fourth stages hav masses of 400 and 200 kg, respectively. 3rd stage 4th stagearrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





