College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 28MCQ
A heavy brass ball is used to make a pendulum with a period of 5.5 s. How long is the cable that connects the pendulum ball to the ceiling?
A. 4.7m
B. 6.2m
C. 7.5m
D. 8.7m
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 14 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 14 - Give three real-world examples of oscillatory...Ch. 14 - A persons heart rate is given in beats per minute....Ch. 14 - Figure Q14.3 shows the position-versus-time graph...Ch. 14 - A tall building is swaying back and forth on a...Ch. 14 - A child is on a swing, gently swinging back and...Ch. 14 - A block oscillating on a spring has an amplitude...Ch. 14 - A block oscillating on a spring has a maximum...Ch. 14 - A block oscillating on a spring has a maximum...Ch. 14 - For the graph in Figure Q14.9, determine the...Ch. 14 - For the graph in Figure Q14.10 , determine the...
Ch. 14 - A block oscillating on a spring has period t = 2.0...Ch. 14 - A pendulum on Planet X, where the value of g is...Ch. 14 - Flies flap their wings at frequencies much too...Ch. 14 - Denver is at a higher elevation than Miami; the...Ch. 14 - If you want to play a tune on wine glasses, youll...Ch. 14 - It is possible to identify promising locations for...Ch. 14 - Sprinters push off from the ball of their foot,...Ch. 14 - Gibbons move through the trees by swinging from...Ch. 14 - What is the difference between the driving...Ch. 14 - Humans have a range of hearing of approximately 20...Ch. 14 - A person driving a truck on a washboard road, one...Ch. 14 - Weve seen that stout tendons in the legs of...Ch. 14 - A spring has an unstretched length of 20 cm. A 100...Ch. 14 - Figure Q14.24 represents the motion of a mass on a...Ch. 14 - A ball of mass m oscillates on a spring with...Ch. 14 - A car bounces up and down on its springs at 1.0 Hz...Ch. 14 - If you carry heavy weights in your hands, how will...Ch. 14 - A heavy brass ball is used to make a pendulum with...Ch. 14 - Very loud sounds can damage hearing by injuring...Ch. 14 - When a guitar string plays the note A, the string...Ch. 14 - In the aftermath of an intense earthquake, the...Ch. 14 - In taking your pulse, you count 75 heartbeats in 1...Ch. 14 - A spring scale hung from the ceiling stretches by...Ch. 14 - A heavy steel ball is hung from a cord to make a...Ch. 14 - An air-track glider attached to a spring...Ch. 14 - An air-track glider is attached to a spring. The...Ch. 14 - What are the (a) amplitude and (b) frequency of...Ch. 14 - What are the (a) amplitude and (b) frequency of...Ch. 14 - During an earthquake, the top of a building...Ch. 14 - Some passengers on an ocean cruise may suffer from...Ch. 14 - A passenger car traveling down a rough road...Ch. 14 - The New England Merchants Bank Building in Boston...Ch. 14 - We can model the motion of a dragonflys wing as...Ch. 14 - We can model the motion of a bumblebees wing as...Ch. 14 - Hummingbirds may seem fragile, but their wings are...Ch. 14 - a. When the displacement of a mass on a spring is...Ch. 14 - A 1.0 kg block is attached to a spring with spring...Ch. 14 - A block attached to a spring with unknown spring...Ch. 14 - A 200 g air-track glider is attached to a spring....Ch. 14 - The position of a 50 g oscillating mass is given...Ch. 14 - A 50-em-long spring is suspended from the ceiling....Ch. 14 - A 200 g mass attached to a horizontal spring...Ch. 14 - A 507 g mass oscillates with an amplitude of 10.0...Ch. 14 - A mass on a string of unknown length oscillates as...Ch. 14 - The mass in a pendulum clock completes one...Ch. 14 - A 200 g ball is tied to a string. It is pulled to...Ch. 14 - The free-fall acceleration on the moon is 1.62...Ch. 14 - Astronauts on the first trip to Mars take along a...Ch. 14 - A building is being knocked down with a wrecking...Ch. 14 - Interestingly, there have been several studies...Ch. 14 - You and your friends find a rope that hangs down...Ch. 14 - A thin, circular hoop with a radius of 0.22 m is...Ch. 14 - Prob. 34PCh. 14 - The amplitude of an oscillator decreases to 36.8%...Ch. 14 - A physics department has a Foucault pendulum, a...Ch. 14 - Calculate and draw an accurate displacement graph...Ch. 14 - A small earthquake starts a lamppost vibrating...Ch. 14 - When you drive your car over a bump, the springs...Ch. 14 - Taipei 101 (a 101-story building in Taiwan) is...Ch. 14 - A 25 kg child sits on a 2.0-m-long rope swing. You...Ch. 14 - Your car rides on springs, so it will have a...Ch. 14 - Vision is blurred if the head is vibrated at 29 Hz...Ch. 14 - A spring has an unstretched length of 12 cm. When...Ch. 14 - A 0.40 kg ball is suspended from a spring with...Ch. 14 - A spring is hanging from the ceiling. Attaching a...Ch. 14 - A spring with spring constant 15.0 N/m hangs from...Ch. 14 - A spring is hung from the ceiling. When a coffee...Ch. 14 - On your first trip to Planet X you happen to take...Ch. 14 - An object oscillating on a spring has the velocity...Ch. 14 - The two graphs in Figure P14.51 are for two...Ch. 14 - As weve seen, astronauts measure their mass by...Ch. 14 - A 100 g ball attached to a spring with spring...Ch. 14 - The ultrasonic transducer used in a medical...Ch. 14 - A compact car has a mass of 1200 kg. When empty,...Ch. 14 - A car with a total mass of 1400 kg (including...Ch. 14 - A 500 g air-track glider attached to a spring with...Ch. 14 - A 1.00 kg block is attached to a horizontal spring...Ch. 14 - Figure P14.59 shows two springs, each with spring...Ch. 14 - Bungee Man is a superhero who does super deeds...Ch. 14 - The earths free-fall acceleration varies from...Ch. 14 - Orangutans can move by brachiation, swinging like...Ch. 14 - An infants toy has a 120 g wooden animal hanging...Ch. 14 - A jellyfish can propel itself with jets of water...Ch. 14 - A 200 g oscillator in a vacuum chamber has a...Ch. 14 - While seated on a tall bench, extend your lower...Ch. 14 - We can make a static measurement to deduce the...Ch. 14 - If, during a stride, the stretch causes her center...Ch. 14 - If we imagine a full cycle of the oscillation,...Ch. 14 - Given what you have calculated for the period of...Ch. 14 - Suppose a 12 mg fly lands in the center of a...Ch. 14 - Modeling the motion of the fly on the web as a...Ch. 14 - If the web were vertical rather than horizontal,...Ch. 14 - Spiders are more sensitive to oscillations at...
Additional Science Textbook Solutions
Find more solutions based on key concepts
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
A Slice of pizza has 500 kcal. If we could burn the pizza and use all the heat to warm a 50-L container of cold...
Campbell Biology in Focus (2nd Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are looking at a small, leafy tree. You do not notice any breeze, and most of the leaves on the tree are motionless. One leaf however, is fluttering hack and forth wildly. After a while, that leaf stops moving and you notice a different leaf moving much more than all the others. Explain what could cause the large motion of one particular leaf.arrow_forwardA 2.00-kg block hangs without vibrating at the end of a spring (k = 500. N/m) that is attached to the ceiling of an elevator car. The car is rising with an upward acceleration of g/3 when the acceleration suddenly ceases (at t = 0). (a) What is the angular frequency of oscillation of the block after the acceleration ceases? (b) By what amount is the spring stretched during the time that the elevator car is accelerating?arrow_forwardA spring has a length of 0.200 m when a 0.300kg mass hangs from it, and a length of 0.750 m when a 1.95-kg mass hangs from it. (a) What is the force constant of the spring? (b) What is The unloaded length of the spring?arrow_forward
- A simple pendulum has mass 1.20 kg and length 0.700 m. (a) What is the period of the pendulum near the surface of Earth? (b) If the same mass is attached to a spring, what spring constant would result in the period of motion found in part (a)?arrow_forwardOne type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger’s spring if you must compress it 0.150 m to drive the 0.0500kg plunger to a top speed of 20.0m/s. (b) What force must be exerted to compress the spring?arrow_forwardA horizontal spring attached to a wall has a force constant of 850 N/m. A block of mass 1.00 kg is attached to the spring and oscillates freely on a horizontal, frictionless surface as in Figure 5.22. The initial goal of this problem is to find the velocity at the equilibrium point after the block is released. (a) What objects constitute the system, and through what forces do they interact? (b) What are the two points of interest? (c) Find the energy stored in the spring when the mass is stretched 6.00 cm from equilibrium and again when the mass passes through equilibrium after being released from rest. (d) Write the conservation of energy equation for this situation and solve it for the speed of the mass as it passes equilibrium. Substitute to obtain a numerical value. (e) What is the speed at the halfway point? Why isnt it half the speed at equilibrium?arrow_forward
- Figure 15.46 This child’s toy relies on springs to keep infants entertained. (credit: By Humboldthead, Flickr) The device pictured in Figure 16.46 entertains infants while keeping them from wandering. The child bounces in a harness suspended from a door frame by a spring constant. (a) If the spring stretches 0.250 m while supporting an 8.0—kg child, what is its spring constant? (b) What is the time for one complete bounce of this child? (c) What is the child's maximum velocity if the amplitude of her bounce is 0.200 m?arrow_forwardOne type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger’s spring if you must compress it 0.150 m to drive the 0.0500-kg plunger to a top speed of 20.0 m/s. (b) What force must be exerted to compress the spring?arrow_forwardOne type of toy car contains a spring that is compressed as the wheels are rolled backward along a surface. The spring remains compressed until the wheels are freed and the car is allowed to roll forward. Jose learns that if he rolls the car backward for a greater distance (up to a certain point), the car will go faster when he releases it. The spring compresses 1.00 cm for every 10.0 cm the car is rolled backward. a. Assuming the spring constant is 150.0 N/m, what is the elastic potential energy stored in the spring when Jose rolls the car backward 20.0 cm? b. What is the elastic potential energy stored in the spring when he rolls the car backward 30.0 cm? c. Explain the correlation between the results for parts (a) and (b) and Joses observations of different speeds.arrow_forward
- Figure P13.74 shows a crude model of an insect wing. The mass m represents the entire mass of the wing, which pivots about the fulcrum F. The spring represents the surrounding connective tissue. Motion of the wing corresponds to vibration of the spring. Suppose the mass of the wing is 0.30 g and the effective spring constant of the tissue is 4.7 104 N/m. If the mass m moves up and down a distance of 2.0 mm from its position of equilibrium, what is the maximum speed of the outer tip of the wing? Figure P13.74arrow_forwardYou are working in an observatory, taking data on electromagnetic radiation from neutron stars. You happen to be analyzing results from the neutron star in Example 11.6, verifying that the period of the 10.0-km-radius neutron star is indeed 2.6 s. You go through weeks of data showing the same period. Suddenly, as you analyze the most recent data, you notice that the period has decreased to 2.3 s and remained at that level since that time. You ask your supervisor about this, who becomes excited and says that the neutron star must have undergone a glitch, which is a sudden shrinking of the radius of the star, resulting in a higher angular speed. As she runs to her computer to start writing a paper on the glitch, she calls back to you to calculate the new radius of the planet, assuming it has remained spherical. She is also talking about vortices and a superfluid core, but you dont understand those words.arrow_forwardThe position of a particle attached to a vertical spring is given by y=(y0cost)j. The y axis points upward, y0 = 14.5 cm. and = 18.85 rad/s. Find the position of the particle at a. t = 0 and b. t = 9.0 s. Give your answers in centimeters.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY