College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 19CQ
What is the difference between the driving frequency and the natural frequency of an oscillator?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 14 - Give three real-world examples of oscillatory...Ch. 14 - A persons heart rate is given in beats per minute....Ch. 14 - Figure Q14.3 shows the position-versus-time graph...Ch. 14 - A tall building is swaying back and forth on a...Ch. 14 - A child is on a swing, gently swinging back and...Ch. 14 - A block oscillating on a spring has an amplitude...Ch. 14 - A block oscillating on a spring has a maximum...Ch. 14 - A block oscillating on a spring has a maximum...Ch. 14 - For the graph in Figure Q14.9, determine the...Ch. 14 - For the graph in Figure Q14.10 , determine the...
Ch. 14 - A block oscillating on a spring has period t = 2.0...Ch. 14 - A pendulum on Planet X, where the value of g is...Ch. 14 - Flies flap their wings at frequencies much too...Ch. 14 - Denver is at a higher elevation than Miami; the...Ch. 14 - If you want to play a tune on wine glasses, youll...Ch. 14 - It is possible to identify promising locations for...Ch. 14 - Sprinters push off from the ball of their foot,...Ch. 14 - Gibbons move through the trees by swinging from...Ch. 14 - What is the difference between the driving...Ch. 14 - Humans have a range of hearing of approximately 20...Ch. 14 - A person driving a truck on a washboard road, one...Ch. 14 - Weve seen that stout tendons in the legs of...Ch. 14 - A spring has an unstretched length of 20 cm. A 100...Ch. 14 - Figure Q14.24 represents the motion of a mass on a...Ch. 14 - A ball of mass m oscillates on a spring with...Ch. 14 - A car bounces up and down on its springs at 1.0 Hz...Ch. 14 - If you carry heavy weights in your hands, how will...Ch. 14 - A heavy brass ball is used to make a pendulum with...Ch. 14 - Very loud sounds can damage hearing by injuring...Ch. 14 - When a guitar string plays the note A, the string...Ch. 14 - In the aftermath of an intense earthquake, the...Ch. 14 - In taking your pulse, you count 75 heartbeats in 1...Ch. 14 - A spring scale hung from the ceiling stretches by...Ch. 14 - A heavy steel ball is hung from a cord to make a...Ch. 14 - An air-track glider attached to a spring...Ch. 14 - An air-track glider is attached to a spring. The...Ch. 14 - What are the (a) amplitude and (b) frequency of...Ch. 14 - What are the (a) amplitude and (b) frequency of...Ch. 14 - During an earthquake, the top of a building...Ch. 14 - Some passengers on an ocean cruise may suffer from...Ch. 14 - A passenger car traveling down a rough road...Ch. 14 - The New England Merchants Bank Building in Boston...Ch. 14 - We can model the motion of a dragonflys wing as...Ch. 14 - We can model the motion of a bumblebees wing as...Ch. 14 - Hummingbirds may seem fragile, but their wings are...Ch. 14 - a. When the displacement of a mass on a spring is...Ch. 14 - A 1.0 kg block is attached to a spring with spring...Ch. 14 - A block attached to a spring with unknown spring...Ch. 14 - A 200 g air-track glider is attached to a spring....Ch. 14 - The position of a 50 g oscillating mass is given...Ch. 14 - A 50-em-long spring is suspended from the ceiling....Ch. 14 - A 200 g mass attached to a horizontal spring...Ch. 14 - A 507 g mass oscillates with an amplitude of 10.0...Ch. 14 - A mass on a string of unknown length oscillates as...Ch. 14 - The mass in a pendulum clock completes one...Ch. 14 - A 200 g ball is tied to a string. It is pulled to...Ch. 14 - The free-fall acceleration on the moon is 1.62...Ch. 14 - Astronauts on the first trip to Mars take along a...Ch. 14 - A building is being knocked down with a wrecking...Ch. 14 - Interestingly, there have been several studies...Ch. 14 - You and your friends find a rope that hangs down...Ch. 14 - A thin, circular hoop with a radius of 0.22 m is...Ch. 14 - Prob. 34PCh. 14 - The amplitude of an oscillator decreases to 36.8%...Ch. 14 - A physics department has a Foucault pendulum, a...Ch. 14 - Calculate and draw an accurate displacement graph...Ch. 14 - A small earthquake starts a lamppost vibrating...Ch. 14 - When you drive your car over a bump, the springs...Ch. 14 - Taipei 101 (a 101-story building in Taiwan) is...Ch. 14 - A 25 kg child sits on a 2.0-m-long rope swing. You...Ch. 14 - Your car rides on springs, so it will have a...Ch. 14 - Vision is blurred if the head is vibrated at 29 Hz...Ch. 14 - A spring has an unstretched length of 12 cm. When...Ch. 14 - A 0.40 kg ball is suspended from a spring with...Ch. 14 - A spring is hanging from the ceiling. Attaching a...Ch. 14 - A spring with spring constant 15.0 N/m hangs from...Ch. 14 - A spring is hung from the ceiling. When a coffee...Ch. 14 - On your first trip to Planet X you happen to take...Ch. 14 - An object oscillating on a spring has the velocity...Ch. 14 - The two graphs in Figure P14.51 are for two...Ch. 14 - As weve seen, astronauts measure their mass by...Ch. 14 - A 100 g ball attached to a spring with spring...Ch. 14 - The ultrasonic transducer used in a medical...Ch. 14 - A compact car has a mass of 1200 kg. When empty,...Ch. 14 - A car with a total mass of 1400 kg (including...Ch. 14 - A 500 g air-track glider attached to a spring with...Ch. 14 - A 1.00 kg block is attached to a horizontal spring...Ch. 14 - Figure P14.59 shows two springs, each with spring...Ch. 14 - Bungee Man is a superhero who does super deeds...Ch. 14 - The earths free-fall acceleration varies from...Ch. 14 - Orangutans can move by brachiation, swinging like...Ch. 14 - An infants toy has a 120 g wooden animal hanging...Ch. 14 - A jellyfish can propel itself with jets of water...Ch. 14 - A 200 g oscillator in a vacuum chamber has a...Ch. 14 - While seated on a tall bench, extend your lower...Ch. 14 - We can make a static measurement to deduce the...Ch. 14 - If, during a stride, the stretch causes her center...Ch. 14 - If we imagine a full cycle of the oscillation,...Ch. 14 - Given what you have calculated for the period of...Ch. 14 - Suppose a 12 mg fly lands in the center of a...Ch. 14 - Modeling the motion of the fly on the web as a...Ch. 14 - If the web were vertical rather than horizontal,...Ch. 14 - Spiders are more sensitive to oscillations at...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardAn automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to the road for every additional 100 kg of passengers. It is driven with a constant horizontal component of speed 20 km/h over a washboard road with sinusoidal bumps. The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. The distance between the front and back wheels is 2.4 m. Find the amplitude of oscillation of the automobile, assuming it moves vertically as an undamped driven harmonic oscillator. Neglect the mass of the wheels and springs and assume that the wheels are always in contact with the road.arrow_forwardWhich of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forward
- If the speed of the observer is increased by 5.0%, what is the period of the pendulum when measured by this observer?arrow_forwardA grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forwardA 50.0-g object connected to a spring with a force constant of 35.0 N/m oscillates with an amplitude of 4.00 cm on a frictionless, horizontal surface. Find (a) the total energy of the system and (b) the speed of the object when its position is 1.00 cm. Find (c) the kinetic energy and (d) the potential energy when its position is 3.00 cm.arrow_forward
- Four people, each with a mass of 72.4 kg, are in a car with a mass of 1 130 kg. An earthquake strikes. The vertical oscillations of the ground surface make the car bounce up and down on its suspension springs, but the driver manages to pull off the road and stop. When the frequency of the shaking is 1.80 Hz, the car exhibits a maximum amplitude of vibration. The earthquake ends and the four people leave the car as fast as they can. By what distance does the cars undamaged suspension lift the cars body as the people get out?arrow_forwardWhat conditions must be met to produce SHM?arrow_forwardIf a simple pendulum oscillates with small amplitude and its length is doubled, what happens to the frequency of its motion? (a) It doubles. (b) It becomes 2 times as large. (c) It becomes half as large. (d) It becomes 1/2 times as large. (e) It remains the same.arrow_forward
- Show that the time rate of change of mechanical energy for a damped, undriven oscillator is given by dE/dt = bv2 and hence is always negative. To do so, differentiate the expression for the mechanical energy of an oscillator, E=12mv2+12kx2, and use Equation 15.51.arrow_forwardThe total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forwardDetermine the angular frequency of oscillation of a thin, uniform, vertical rod of mass m and length L pivoted at the point O and connected to two springs (Fig. P16.78). The combined spring constant of the springs is k(k = k1 + k2), and the masses of the springs are negligible. Use the small-angle approximation (sin ). FIGURE P16.78arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY