Concept explainers
(a)
Interpretation:
The buffer capacity of 0.250 M lactic acid and 0.250 M lactate ion should be determined.
Concept introduction:
A buffer is a solution which resists change in pH on addition of small amount of acid or base. A buffer is prepared by mixing a weak acid with its conjugate base ion or a weak base and its conjugate acid ion.
For example the mixture of acetic acid and its conjugate base acetate ion will form a buffer solution.
The pH of a buffer solution is determined with the following equation
Also known as Henderson Hasselbalch’s equation
The buffer capacity is the capacity of a buffer to which it can resist a major change in pH on addition of acid or base.
It is dependent on the ratio of concentration of weak acid and concentration of its conjugate base.
(b)
Interpretation:
The buffer capacity of 0.250 M lactic acid and 0.125 M lactate ion should be determined.
Concept introduction: A buffer is a solution which resists change in pH on addition of small amount of acid or base. A buffer is prepared by mixing a weak acid with its conjugate base ion or a weak base and its conjugate acid ion.
For example the mixture of acetic acid and its conjugate base acetate ion will form a buffer solution.
The pH of a buffer solution is determined with the following equation.
Also known as Henderson Hasselbalch’s equation
The buffer capacity is the capacity of a buffer to which it can resist a major change in pH on addition of acid or base.
It is dependent on the ratio of concentration of weak acid and concentration of its conjugate base
(c)
Interpretation:
The buffer capacity of 0.250 M lactic acid and 0.0800 M lactate ion should be determined.
Concept introduction: A buffer is a solution which resists change in pH on addition of small amount of acid or base. A buffer is prepared by mixing a weak acid with its conjugate base ion or a weak base and its conjugate acid ion.
For example the mixture of acetic acid and its conjugate base acetate ion will form a buffer solution.
The pH of a buffer solution is determined with the following equation.
Also known as Henderson Hasselbalch’s equation
The buffer capacity is the capacity of a buffer to which it can resist a major change in pH on addition of acid or base.
It is dependent on the ratio of concentration of weak acid and concentration of its conjugate base
(d)
Interpretation:
The buffer capacity of 0.250 M lactic acid and 0.0500 M lactate ion should be determined.
Concept introduction:
A buffer is a solution which resists change in pH on addition of small amount of acid or base. A buffer is prepared by mixing a weak acid with its conjugate base ion or a weak base and its conjugate acid ion.
For example the mixture of acetic acid and its conjugate base acetate ion will form a buffer solution.
The pH of a buffer solution is determined with the following equation
Also known as Henderson Hasselbalch’s equation
The buffer capacity is the capacity of a buffer to which it can resist a major change in pH on addition of acid or base.
It is dependent on the ratio of concentration of weak acid and concentration of its conjugate base

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
OWLv2 for Masterton/Hurley's Chemistry: Principles and Reactions, 8th Edition, [Instant Access], 1 term (6 months)
- What is the product of the reaction? F3C. CF3 OMe NaOH / H₂Oarrow_forwardWhat would you expect to be the major product obtained from the following reaction? Please explain what is happening here. Provide a detailed explanation and a drawing showing how the reaction occurs. The correct answer to this question is V.arrow_forwardPlease answer the question for the reactions, thank youarrow_forward
- What is the product of the following reaction? Please include a detailed explanation of what is happening in this question. Include a drawing showing how the reagent is reacting with the catalyst to produce the correct product. The correct answer is IV.arrow_forwardPlease complete the reactions, thank youarrow_forwardConsider the synthesis. What is compound Y? Please explain what is happening in this question. Provide a detailed explanation and a drawing to show how the compound Y creates the product. The correct answer is D.arrow_forward
- What would be the major product of the following reaction? Please include a detailed explanation of what is happening in this question. Include steps and a drawing to show this reaction proceeds and how the final product is formed. The correct answer is B. I put answer D and I don't really understand what is going on in the question.arrow_forwardWhat is the product of the following reaction? Please explain what is happening in this question. Provide a detailed explanation and a drawing showing how the reagent is reacting with the catalysts to product the correct product. The correct answer is B.arrow_forwardWhat is the missing intermediate 1 and the final product 2. Please include a detailed explanation explaining the steps of malonic ester synthesis. Please include drawings of the intermediate and how it occurs and how the final product is former.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





