
Concept explainers
(a)
Interpretation:
The buffer capacity of 0.250 M lactic acid and 0.250 M lactate ion should be determined.
Concept introduction:
A buffer is a solution which resists change in pH on addition of small amount of acid or base. A buffer is prepared by mixing a weak acid with its conjugate base ion or a weak base and its conjugate acid ion.
For example the mixture of acetic acid and its conjugate base acetate ion will form a buffer solution.
The pH of a buffer solution is determined with the following equation
Also known as Henderson Hasselbalch’s equation
The buffer capacity is the capacity of a buffer to which it can resist a major change in pH on addition of acid or base.
It is dependent on the ratio of concentration of weak acid and concentration of its conjugate base.
(b)
Interpretation:
The buffer capacity of 0.250 M lactic acid and 0.125 M lactate ion should be determined.
Concept introduction: A buffer is a solution which resists change in pH on addition of small amount of acid or base. A buffer is prepared by mixing a weak acid with its conjugate base ion or a weak base and its conjugate acid ion.
For example the mixture of acetic acid and its conjugate base acetate ion will form a buffer solution.
The pH of a buffer solution is determined with the following equation.
Also known as Henderson Hasselbalch’s equation
The buffer capacity is the capacity of a buffer to which it can resist a major change in pH on addition of acid or base.
It is dependent on the ratio of concentration of weak acid and concentration of its conjugate base
(c)
Interpretation:
The buffer capacity of 0.250 M lactic acid and 0.0800 M lactate ion should be determined.
Concept introduction: A buffer is a solution which resists change in pH on addition of small amount of acid or base. A buffer is prepared by mixing a weak acid with its conjugate base ion or a weak base and its conjugate acid ion.
For example the mixture of acetic acid and its conjugate base acetate ion will form a buffer solution.
The pH of a buffer solution is determined with the following equation.
Also known as Henderson Hasselbalch’s equation
The buffer capacity is the capacity of a buffer to which it can resist a major change in pH on addition of acid or base.
It is dependent on the ratio of concentration of weak acid and concentration of its conjugate base
(d)
Interpretation:
The buffer capacity of 0.250 M lactic acid and 0.0500 M lactate ion should be determined.
Concept introduction:
A buffer is a solution which resists change in pH on addition of small amount of acid or base. A buffer is prepared by mixing a weak acid with its conjugate base ion or a weak base and its conjugate acid ion.
For example the mixture of acetic acid and its conjugate base acetate ion will form a buffer solution.
The pH of a buffer solution is determined with the following equation
Also known as Henderson Hasselbalch’s equation
The buffer capacity is the capacity of a buffer to which it can resist a major change in pH on addition of acid or base.
It is dependent on the ratio of concentration of weak acid and concentration of its conjugate base

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
EBK CHEMISTRY: PRINCIPLES AND REACTIONS
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction LiNO3arrow_forwardAn unknown weak acid with a concentration of 0.410 M has a pH of 5.600. What is the Ka of the weak acid?arrow_forward(racemic) 19.84 Using your reaction roadmaps as a guide, show how to convert 2-oxepanone and ethanol into 1-cyclopentenecarbaldehyde. You must use 2-oxepanone as the source of all carbon atoms in the target molecule. Show all reagents and all molecules synthesized along the way. & + EtOH H 2-Oxepanone 1-Cyclopentenecarbaldehydearrow_forward
- R₂ R₁ R₁ a R Rg Nu R₂ Rg R₁ R R₁₂ R3 R R Nu enolate forming R₁ R B-Alkylated carbonyl species or amines Cyclic B-Ketoester R₁₁ HOB R R₁B R R₁₂ B-Hydroxy carbonyl R diester R2 R3 R₁ RB OR R₂ 0 aB-Unsaturated carbonyl NaOR Aldol HOR reaction 1) LDA 2) R-X 3) H₂O/H₂O ketone, aldehyde 1) 2°-amine 2) acid chloride 3) H₂O'/H₂O 0 O R₁ R₁ R R₁ R₁₂ Alkylated a-carbon R₁ H.C R₁ H.C Alkylated methyl ketone acetoacetic ester B-Ketoester ester R₁ HO R₂ R B-Dicarbonyl HO Alkylated carboxylic acid malonic ester Write the reagents required to bring about each reaction next to the arrows shown. Next, record any regiochemistry or stereochemistry considerations relevant to the reaction. You should also record any key aspects of the mechanism, such as forma- tion of an important intermediate, as a helpful reminder. You may want to keep track of all reactions that make carbon-carbon bonds, because these help you build large molecules from smaller fragments. This especially applies to the reactions in…arrow_forwardProvide the reasonable steps to achieve the following synthesis.arrow_forwardIdentify which compound is more acidic. Justify your choice.arrow_forward
- Provide the reasonable steps to achieve the following synthesis.arrow_forwardWhen anisole is treated with excess bromine, the reaction gives a product which shows two singlets in 1H NMR. Draw the product.arrow_forward(ii) Draw a reasonable mechanism for the following reaction: CI NaOH heat OH (hint: SNAr Reaction) :arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





