Delmar's Standard Textbook Of Electricity
7th Edition
ISBN: 9781337900348
Author: Stephen L. Herman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 1RQ
Which trigonometric function is used to find the angle if the length of the hypotenuse and of the adjacent side are known?
Expert Solution & Answer
To determine
The trigonometric function that is used to find the angle if the length of the hypotenuse and length of the adjacent side are known.
Answer to Problem 1RQ
Cosine functionis used to find the angle if the length of the hypotenuse and length of the adjacent side are known.
Explanation of Solution
In the figure above,
A: Side opposite to angle X, adjacent to angle Y
B: Side opposite to angle Y, adjacent to angle X
Hence,
Hypotenuse, side A and angle Y are related as : cos Y = side A/Hypotenuse
Hypotenuse, side B and angle X are related as : cos X = side B/Hypotenuse
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q1: If the input x[n] = [001111] is applied to a discrete-time LTI system of impulse response
h[n] = [321]. Using z-transform, find the output y[n] of the system.
Q1: If the input x[n] = [001111] is applied to a discrete-time LTI system of impulse response
h[n]=
= [321]. Find the output y[n] of the system.
a. Using analytical technique.
b. Using linear convolution technique.
Don't use ai to answer I will report you answer
Chapter 14 Solutions
Delmar's Standard Textbook Of Electricity
Ch. 14 - 1. Which trigonometric function is used to find...Ch. 14 - 2. If side A has a length of 18.5 ft and side B...Ch. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - 5. The hypotenuse has a length of 65 in., and side...Ch. 14 - Prob. 6RQCh. 14 - Prob. 7RQCh. 14 - Prob. 8RQCh. 14 - Using the dimensions in Question 8, what is the...Ch. 14 - Prob. 10RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An antenna circuit is connected to a 4/4 transmission line with a characteristic impedance 5052. The transmission line is terminated with an antenna having a load impedance Z=60+ j4012. The input voltage at the source is V, 100 V RMS Vy 1. Calculate the input impedance seen by the source at the antenna connection point. 2. Determine the current flowing into the antenna. 3. Verify the supplied power from the source. 4. Calculate the radiated power P 5. Find the power lost in the systemarrow_forwardA resonant half wavelength dipole is made of copper (G= 5.7 ×10 S/m) wire. Determine the conduction-dielectric (radiation) efficiency e of the dipole antenna, if the operating frequency is = 100 MHz, the radi of the wire b is 3x102arrow_forward"Detail the solution to the question with an explanation of the integration." A diploe with a total loss resistance of 122, is connected to generator whose internal impedance is 50+j25, the peak voltage of generator is 2 V and the impedance of the dipole excluding the loss resistance is 73+j42.5. All antenna and generator are connected via 50-92 2/4 long lossless transmission line. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator (c) Determine the power radiated by the antennaarrow_forward
- For an X-band (8.2-12.4) GHz rectangular horn antenna with aperture dimensions of 5.5cm and 7.4cm. find its maximum effective aperture (in cm2) when its gain (over isotropic) is 1- 14.8dB at 8.2 GHz 2-16.5dB at 10.3GHz 3- 18dB at 12.4GHzarrow_forwardFind the directivity in dB and the effective aperture for the following normalized radiation intensity (take f=100 MHz): U(0,0)=0.342csc0 0≤0≤20 20 ≤0≤60 60 ≤0≤18arrow_forwardAn antenna with a radiation impedance of 75+j10 ohm, with 10 ohm loss resistance, is connected to a generator with open-circuit voltage of 12 v and an internal impedance of 20 ohms via a 2/4-long transmission line with characteristic impedance of 75 ohms. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator. (c) Determine the power radiated by the antenna. (d) Determine the reflection coefficient at the antenna terminals.arrow_forward
- circuit analysis using superposition what is value of iarrow_forwardTwo X-band 8.2-12.4 GHz rectangular horns, with aperture dimensions of 5.5 cm and 7.4 cm and each with a directivity of 16.3 dB (over isotropic at 10 GHz), are used as transmitting and receiving antennas. Assuming that the input power is 200 mW, the VSWR of each is 1.1. The conduction-dielectric efficiency is 100%, and the antennas are polarization-matched, find the maximum received power when the horns are separated in air by 5 m.arrow_forwardThe normalized radiation intensity of an antenna is rotationally symmetric in 4, and it is represented by 1 0°≤8 <30° 0.5 30° ≤ 0 < 60° U = 0.1 60° ≤ 0 < 90° 90° ≤ 0 ≤ 180° a) Determine the directivity (above isotropic) of an antenna in dB? b) Determine the directivity (above an infinitesimal dipole) of an antenna in dB?arrow_forward
- A resonant lossless 2/2 dipole antenna, having a directivity of 2.156 dB at frequency of 9 MHz, has input impedance 73 £2 and is connected to a lossless 73 2 transmission line. A wave, having the same polarization as the antenna, is incident upon the antenna with a power density of 5 W/m². Find the received power available at the end of the transmission line.arrow_forward"Detail the solution to the question with an explanation of the integration." The normalized radiation intensity is given by: 1 0≤0≤30 U(0,) cos(0) 30 ≤0≤90 0.866 0 90 ≤0≤180 Determine the maximum directivity, HPBWarrow_forwardDon't use ai to answer I will report you answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
The Divergence Theorem; Author: Professor Dave Explains;https://www.youtube.com/watch?v=vZGvgru4TwE;License: Standard Youtube License