
Concept explainers
a.
Whether the statement “If
a.

Answer to Problem 1RE
The statement is false.
Explanation of Solution
The given
Substitute
Thus, the constant vector is
Hence the statement if
b.
Whether the statement “The curvature of a circle of radius 5 is
b.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Definition used:
“The curvature of a curve at a point can be visualized in terms of a circle of curvature, which is a circle of radius R that is tangent to the curve at that point.
The curvature at the point is
Description:
The given circle has the radius of 5.
By the above definition used, the curvature of a circle is reciprocal of the radius of the circle.
Thus, the curvature of the circle is
Hence, the statement “the curvature of a circle of radius 5 is
c.
Whether the statement “The graph of the curve
c.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Definition used:
One point to a curve corresponds to a single vector
The entire curve can be represented by a vector-valued function
Calculation:
The given graph is
The values are
Here,
That is
Therefore, the statement “the graph of the curve
d.
Whether the given statement “If
d.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Consider
Thus, the vector
Therefore, the given statement is true.
e.
Whether the statement “The parameterized curve
e.

Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Suppose
Differentiate
Compute
Since
Therefore, the given statement is false.
f.
Whether the statement “The position vector and the principal unit normal are always parallel on a smooth curve.” is true or not.
f.

Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Formula used:
Suppose r is a smooth parameterized curve and s is the arc length.
The unit tangent vector T is
The principal unit normal vector is
Counter example:
Consider
Differentiate
Use magnitude formula to obtain the value of
On further simplification,
Use unit tangent formula to compute
Thus, the unit tangent vector
Differentiate
Use magnitude formula to obtain the value of
On further simplification,
Use principal unit normal formula to compute the value of
Thus, the principal unit normal vector
It is observed that the position vector and the principal unit normal vector are not equal.
Therefore, the given statement is false.
Want to see more full solutions like this?
Chapter 14 Solutions
EP CALCULUS:EARLY TRANS.-MYLABMATH ACC.
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Elementary Statistics (13th Edition)
University Calculus: Early Transcendentals (4th Edition)
Pre-Algebra Student Edition
A First Course in Probability (10th Edition)
- Find the values of p for which the series is convergent. P-?- ✓ 00 Σ nº (1 + n10)p n = 1 Need Help? Read It Watch It SUBMIT ANSWER [-/4 Points] DETAILS MY NOTES SESSCALCET2 8.3.513.XP. Consider the following series. 00 Σ n = 1 1 6 n° (a) Use the sum of the first 10 terms to estimate the sum of the given series. (Round the answer to six decimal places.) $10 = (b) Improve this estimate using the following inequalities with n = 10. (Round your answers to six decimal places.) Sn + + Los f(x) dx ≤s ≤ S₁ + Jn + 1 + Lo f(x) dx ≤s ≤ (c) Using the Remainder Estimate for the Integral Test, find a value of n that will ensure that the error in the approximation s≈s is less than 0.0000001. On > 11 n> -18 On > 18 On > 0 On > 6 Need Help? Read It Watch Itarrow_forward√5 Find Lª³ L² y-are y- arctan (+) dy dydx. Hint: Use integration by parts. SolidUnderSurface z=y*arctan(1/x) Z1 2 y 1 1 Round your answer to 4 decimal places.arrow_forwardFor the solid lying under the surface z = √√4-² and bounded by the rectangular region R = [0,2]x[0,2] as illustrated in this graph: Double Integral Plot of integrand over Region R 1.5 Z 1- 0.5- 0 0.5 1 1.5 205115 Answer should be in exact math format. For example, some multiple of .arrow_forward
- Find 2 S² 0 0 (4x+2y)5dxdyarrow_forward(14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk.arrow_forward6. Solve the system of differential equations using Laplace Transforms: x(t) = 3x₁ (t) + 4x2(t) x(t) = -4x₁(t) + 3x2(t) x₁(0) = 1,x2(0) = 0arrow_forward
- 3. Determine the Laplace Transform for the following functions. Show all of your work: 1-t, 0 ≤t<3 a. e(t) = t2, 3≤t<5 4, t≥ 5 b. f(t) = f(tt)e-3(-) cos 4τ drarrow_forward4. Find the inverse Laplace Transform Show all of your work: a. F(s) = = 2s-3 (s²-10s+61)(5-3) se-2s b. G(s) = (s+2)²arrow_forward1. Consider the differential equation, show all of your work: dy =(y2)(y+1) dx a. Determine the equilibrium solutions for the differential equation. b. Where is the differential equation increasing or decreasing? c. Where are the changes in concavity? d. Suppose that y(0)=0, what is the value of y as t goes to infinity?arrow_forward
- 2. Suppose a LC circuit has the following differential equation: q'+4q=6etcos 4t, q(0) = 1 a. Find the function for q(t), use any method that we have studied in the course. b. What is the transient and the steady-state of the circuit?arrow_forward5. Use variation of parameters to find the general solution to the differential equation: y" - 6y' + 9y=e3x Inxarrow_forwardLet the region R be the area enclosed by the function f(x) = ln (x) + 2 and g(x) = x. Write an integral in terms of x and also an integral in terms of y that would represent the area of the region R. If necessary, round limit values to the nearest thousandth. 5 4 3 2 1 y x 1 2 3 4arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





