PHYSICS F/SCI.+ENGINEERS W/MOD.PHYSICS
PHYSICS F/SCI.+ENGINEERS W/MOD.PHYSICS
5th Edition
ISBN: 9780321992277
Author: GIANCOLI
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 1Q

Give some examples of everyday vibrating objects. Which exhibit SHM, at least approximately?

Expert Solution & Answer
Check Mark
To determine

The examples of everyday vibrating objects that exhibit SHM, at least approximately.

Answer to Problem 1Q

A mass spring system, a swing, bouncing ball, blade on a jigsaw and simple pendulum are examples of everyday vibrating objects which exhibit SHM.

Explanation of Solution

A motion in which net restoring force is directly proportional to the negative of the displacement is known as simple harmonic motion.

The examples of everyday vibrating objects which exhibit SHM are given below.

  1. 1. A mass spring system
  2. 2. A swing
  3. 3. Bouncing ball
  4. 4. A simple pendulum
  5. 5. Blade on a jigsaw

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=
Four point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric   : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric   : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…
Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1)  Charge q3 is to the right of charge q2. 2)  Charge q3 is between charges q1 and q2. 3)  Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1)  The magnitude of the net force on charge q3 would still be zero. 2)  The effect depends upon the numeric value of charge q3. 3)  The net force on charge q3 would be towards q2. 4)  The net force on charge q3 would be towards q1. D. Select option that…

Chapter 14 Solutions

PHYSICS F/SCI.+ENGINEERS W/MOD.PHYSICS

Ch. 14 - How could you double the maximum speed of a simple...Ch. 14 - A 5.0-kg trout is attached to the hook of a...Ch. 14 - If a pendulum clock is accurate at sea level, will...Ch. 14 - A tire swing hanging from a branch reaches nearly...Ch. 14 - For a simple harmonic oscillator, when (if ever)...Ch. 14 - Prob. 9QCh. 14 - Does a car bounce on its springs faster when it is...Ch. 14 - Prob. 11QCh. 14 - A thin uniform rod of mass m is suspended from one...Ch. 14 - What is the approximate period of your walking...Ch. 14 - A tuning fork of natural frequency 264 Hz sits on...Ch. 14 - Why can you make water slosh back and forth in a...Ch. 14 - Give several everyday examples of resonance.Ch. 14 - Prob. 17QCh. 14 - Over the years, buildings have been able to be...Ch. 14 - Prob. 1MCQCh. 14 - Prob. 2MCQCh. 14 - Prob. 3MCQCh. 14 - Prob. 4MCQCh. 14 - Prob. 5MCQCh. 14 - Prob. 6MCQCh. 14 - Prob. 7MCQCh. 14 - Prob. 8MCQCh. 14 - Prob. 9MCQCh. 14 - Prob. 10MCQCh. 14 - Prob. 11MCQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - (II) Construct a Table, indicating the position x...Ch. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - (II) An object of unknown mass m is hung from a...Ch. 14 - (II) Figure 1429 shows two examples of SHM,...Ch. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - Prob. 21PCh. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - (III) A mass m is at rest on the end of a spring...Ch. 14 - (III) A mass m is connected to two springs, with...Ch. 14 - Prob. 26PCh. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - Prob. 32PCh. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Prob. 35PCh. 14 - Prob. 36PCh. 14 - Prob. 37PCh. 14 - Prob. 38PCh. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Prob. 42PCh. 14 - Prob. 43PCh. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - (II) Derive a formula for the maximum speed vmax...Ch. 14 - Prob. 49PCh. 14 - Prob. 50PCh. 14 - Prob. 51PCh. 14 - (II) (a) Determine the equation of motion (for as...Ch. 14 - (II) A meter stick is hung at its center from a...Ch. 14 - Prob. 55PCh. 14 - (II) A student wants to use a meter stick as a...Ch. 14 - (II) A plywood disk of radius 20.0cm and mass...Ch. 14 - (II) Estimate how the damping constant changes...Ch. 14 - Prob. 63PCh. 14 - Prob. 65PCh. 14 - Prob. 67PCh. 14 - (II) (a) For a forced oscillation at resonance ( =...Ch. 14 - Prob. 69PCh. 14 - (III) By direct substitution, show that Eq. 1422,...Ch. 14 - Prob. 75GPCh. 14 - Prob. 77GPCh. 14 - A 0.650-kg mass oscillates according to the...Ch. 14 - Prob. 83GPCh. 14 - An oxygen atom at a particular site within a DNA...Ch. 14 - A seconds pendulum has a period of exactly 2.000...Ch. 14 - Prob. 87GPCh. 14 - Prob. 89GPCh. 14 - Carbon dioxide is a linear molecule. The...Ch. 14 - A mass attached to the end of a spring is...Ch. 14 - Imagine that a 10-cm-diameter circular hole was...Ch. 14 - In Section 145, the oscillation of a simple...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY