(a)
Interpretation:
Volume percent of solution made by dissolution of
Concept Introduction:
Different concentration terms are employed to describe concentration of solution. Below mentioned are some concentration terms.
1. Molarity
2. Molality
3. Mass percent
4. Volume percent
(b)
Interpretation:
Volume percent of solution made by dissolution of
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
Volume percent of solution made by dissolution of
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Foundations of College Chemistry 15e Binder Ready Version + WileyPLUS Registration Card
- You want to prepare a 1.0 mol/kg solution of ethyleneglycol, C2H4(OH)2, in water. Calculate the mass of ethylene glycol you would need to mix with 950. g water.arrow_forwardWhat mass of HCl is contained in 45.0 mL of an aqueous HCl solution that has a density of 1.19 g cm-3 and contains 37.21% HCl by mass?arrow_forwardA student weighs out a 4.80-g sample of aluminum bromide, transfers it to a 100-mL volumetric flask, adds enough water to dissolve it, and then adds water to the 100-mL mark. What is the molarity of aluminum bromide in the resulting solution?arrow_forward
- What mass of solid NaOH (97.0% NaOH by mass) is required to prepare 1.00 L of a 10.0% solution of NaOH by mass? The density of the 10.0% solution is 1.109 g/mL.arrow_forwardThe units of parts per million (ppm) and parts per billion (ppb) are commonly used by environmental chemists. In general, 1 ppm means 1 part of solute for every 106 parts of solution. Mathematically, by mass: ppm=gsolutegsolution=mgsolutekgsolution In the case of very dilute aqueous solutions, a concentration of 1.0 ppm is equal to 1.0 g of solute per 1.0 mL, which equals 1.0 g solution. Parts per billion is defined in a similar fashion. Calculate the molarity of each of the following aqueous solutions. a. 5.0 ppb Hg in H2O b. 1.0 ppb CHCl3 in H2O c. 10.0 ppm As in H2O d. 0.10 ppm DDT (C14H9Cl5) in H2Oarrow_forwardA solution is 0.1% by mass calcium chloride. Therefore, 100. g of the solution contains g of calcium chloride.arrow_forward
- How do we define the mass percent composition of a solution? Give an example of a solution, and explain the relative amounts of solute and solvent present in the solution in terms of the mass percent composition.arrow_forwardWithout consulting your textbook, list and explain the main postulates of the kinetic molecular theory for gases. How do these postulates help us account for the following bulk properties of a gas: the pressure of the gas and why the pressure of the gas increases with increased temperature; the fact that a gas tills its entire container; and the fact that the volume of a given sample of gas increases as its temperature is increased.arrow_forwardA student wants to prepare 1.00 L of a 1.00-M solution of NaOH (molar mass = 40.00 g/mol). If solid NaOH is available, how would the student prepare this solution? If 2.00 M NaOH is available, how would the student prepare the solution? To help ensure three significant figures in the NaOH molarity, to how many significant figures should the volumes and mass be determined?arrow_forward
- What is the difference between a solute and a solvent?arrow_forwardYou wish to prepare 1 L of a 0.02-M potassium iodate solution. You require that the final concentration be within 1% of 0.02 M and that the concentration must be known accurately to the fourth decimal place. How would you prepare this solution? Specify the glassware you would use, the accuracy needed for the balance, and the ranges of acceptable masses of KIO3 that can be used.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning