(a)
Interpretation: In accordance with the given conditions the number of possible arrangements and the entropy for the given set up has to be calculated.
Concept Introduction:
A
Where
The entropy and thermodynamic probability is related by Boltzmann equation. As the number of possible arrangements increases the entropy also increases.
Where,
(a)
Answer to Problem 14.6QP
The number of possible arrangements of the system with barrier
The entropy for the given system,
The number of possible arrangement of the system without barrier
The entropy for the given system,
Explanation of Solution
To record the given data
The number of particles in the system,
The degeneracy of the system with the barrier,
The degeneracy of the system without the barrier,
To calculate the probability of arrangements of particles in the system with barrier
The probability of arrangements of the particles in the system with barrier is 1024
There are ten particles in the system. With the barrier there are two cells in the system. That is degeneracy is two. On plugging in the values of
Explanation:
To calculate the entropy of the given system with the barrier
Entropy of the system with barrier is found to be,
The entropy of the system is calculated by plugging in the values of
Explanation:
To calculate the probability of arrangements of particles in the system without barrier
The probability of arrangement of particles in the system without barrier is
There are 10 particles in the system. Without the barrier there are four cells in the system. That is degeneracy is four. On plugging in the values of
Explanation:
To calculate the entropy of the given system without the barrier
Entropy of the system with barrier is found to be,
The entropy of the system is calculated by plugging in the values of
The number of possible arrangements and the entropy for the given setup has been calculated in accordance with the given conditions.
(b)
Interpretation: In accordance with the given conditions the number of possible arrangements and the entropy for the given set up has to be calculated.
Concept Introduction:
A thermodynamic system can have degenerate and non degenerate energy levels. There can be different possible arrangements of the particles in the various energy levels. These possible arrangements are defined as thermodynamic probability
Where
The entropy and thermodynamic probability is related by Boltzmann equation. As the number of possible arrangements increases the entropy also increases.
Where,
(b)
Answer to Problem 14.6QP
(b)
The number of possible arrangements of the system with barrier
The entropy for the given system,
The number of possible arrangement of the system without barrier
The entropy for the given system,
Explanation of Solution
To record the given data
The number of particles in the system,
The degeneracy of the system with the barrier,
The degeneracy of the system without the barrier,
To calculate the probability of arrangement of particles in the system with barrier
The probability of arrangement of particles in the system with barrier is
There are fifty particles in the system. With the barrier there are two cells in the system. That is degeneracy is two. On plugging in the values of
To calculate the entropy of the given system with the barrier
Entropy of the system with barrier is found to be,
The entropy of the system is calculated by plugging in the values of
To calculate the probability of arrangement of particles in the system without barrier
The probability of arrangement of particles in the system without barrier is
There are fifty particles in the system. Without the barrier there are four cells in the system. That is degeneracy is four. On plugging in the values of
To calculate the entropy of the given system without the barrier
Entropy of the system with barrier is found to be,
The entropy of the system is calculated by plugging in the values of
The number of possible arrangements and the entropy for the given setup has been calculated in accordance with the given conditions.
(c)
Interpretation: In accordance with the given conditions the number of possible arrangements and the entropy for the given set up has to be calculated.
Concept Introduction:
A thermodynamic system can have degenerate and non degenerate energy levels. There can be different possible arrangements of the particles in the various energy levels. These possible arrangements are defined as thermodynamic probability
Where
The entropy and thermodynamic probability is related by Boltzmann equation. As the number of possible arrangements increases the entropy also increases.
Where,
(c)
Answer to Problem 14.6QP
(c)
The number of possible arrangements of the system with barrier
The entropy for the given system,
The number of possible arrangement of the system without barrier
The entropy for the given system,
Explanation of Solution
To record the given data
The number of particles in the system,
The degeneracy of the system with the barrier,
The degeneracy of the system without the barrier,
To calculate the probability of arrangement of particles in the system with barrier
The probability of arrangement of particles in the system with barrier is
There are hundred particles in the system. With the barrier there are two cells in the system. That is degeneracy is two. On plugging in the values of
To calculate the entropy of the given system with the barrier
Entropy of the system with barrier is found to be,
The entropy of the system is calculated by plugging in the values of
To calculate the probability of arrangement of particles in the system without barrier
The probability of arrangement of particles in the system without barrier is
There are hundred particles in the system. Without the barrier there are four cells in the system. That is degeneracy is four. On plugging in the values of
To calculate the entropy of the given system without the barrier
Entropy of the system with barrier is found to be,
The entropy of the system is calculated by plugging in the values of
The number of possible arrangements and the entropy for the given setup has been calculated in accordance with the given conditions.
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry: Atoms First
- In the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward
- (5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward6. Draw the products) formed from the following reactions. (a) HIarrow_forwardDon't used Ai solutionarrow_forward
- Please correct answer and don't used hand raitingarrow_forward1. For each of the following, predict the products of the reaction by writing a balance net ionic equation for each. If no reaction is expected, then write NO REACTION. (a) AgNO3 (aq) is mixed with Na2CO3 (aq). (b) An aqueous solution of ammonium sulfate is added to an aqueous solution of calcium chloride. (c) RbI (aq) is added to Pb(NO3)2 (aq). (d) NaCl (s) is added to AgNO3 (aq).arrow_forward4. Determine the amount in grams of AgCl (s) formed when 2.580 g AgNO3(s) is added to 45.00 mL of a 0.1250 M CrCl3 (aq) (The other product is aqueous chromium (III) nitrate) 5. Determine the amount (in grams) of Cobalt (II) phosphate formed when an aqueous solution of 30.0 ml of 0.450 M Sodium Phosphate is mixed with 20.0 mL of 0.500 M aqueous solution of cobalt (II) nitrate. (The other product is aqueous sodium nitrate)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning