
Concept explainers
Review. Assume a certain liquid, with density 1 230 kg/m3, exerts no friction force on spherical objects. A ball of mass 2.10 kg and radius 9.00 cm is dropped from rest into a deep tank of this liquid from a height of 3.30 m above the surface. (a) Find the speed at which the hall enters the liquid. (b) Evaluate the magnitudes of the two forces that are exerted on the ball as it moves through the liquid. (c) Explain why the ball moves down only a limited distance into the liquid and calculate this distance. (d) With what speed will the ball pop up out of the liquid? (c) How does the time interval ∆tdown, during which the ball moves from the surface down to its lowest point, compare with the lime interval ∆tup for the return trip between the same two points? (f) What If? Now modify the model to suppose the liquid exerts a small friction force on the ball, opposite in direction to its motion. In this case, how do the time intervals ∆tdown and ∆tup compare? Explain your answer with a conceptual argument rather than a numerical calculation.
(a)

The speed of the ball which enters the liquid.
Answer to Problem 14.64AP
The speed of the ball which enters the liquid is
Explanation of Solution
The density of the liquid is
By the conservation of energy,
Here,
Substitute
Conclusion:
Therefore, the speed of the ball which enters the liquid is
(b)

The magnitudes of the two forces that are exerted on the ball as move through liquid.
Answer to Problem 14.64AP
The magnitude of the gravitational force that is exerted on the ball as move through liquid is
Explanation of Solution
Formula to calculate the gravitational force or weight of the ball is,
Here,
Substitute
Thus, the gravitational force exerted on the ball is
The buoyant force exerted on the ball is equal to the volume of water displaced by the ball.
Formula to calculate the buoyant force exerted on the ball is,
Here,
Formula to calculate the volume of the spherical ball is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the magnitudes of the gravitational force that are exerted on the ball as move through liquid is
(c)

The distance covered by the ball in water.
Answer to Problem 14.64AP
The distance covered by the ball in water is
Explanation of Solution
The buoyant force exerted on the ball is greater than the weight of the ball, therefore the ball certain distance covered inside the water because it changes the direction of motion.
From third law of motion,
Here,
Formula to calculate the acceleration of the ball is,
Formula to calculate the net force acting on a ball is,
Substitute
Substitute
Substitute
The negative sign shows direction of the ball in downward direction.
Conclusion:
Therefore, the distance covered by the ball in water is
(d)

The speed of the ball pop up out of the liquid.
Answer to Problem 14.64AP
The speed of the ball which enters the liquid is
Explanation of Solution
The speed of the ball which enters the liquid is equal to the speed of the ball pop up out of the liquid because absence of friction, no energy losses occur in this system. Hence the speed of the ball pop up out of the liquid is
Conclusion:
Therefore, the speed will the ball pop up out of the liquid is
(e)

The result of comparison the time interval during which the ball moves from the surface to its lowest point with the time interval for return trip at the same point.
Answer to Problem 14.64AP
The time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point.
Explanation of Solution
The time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point because ball going down and up acceleration of the ball and distance covered by the ball is same.
Conclusion:
Therefore, the time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point.
(f)

Compare the time interval during which the ball moves from the surface to its lowest point with the time interval for return trip at the same point.
Answer to Problem 14.64AP
The time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point.
Explanation of Solution
The time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point when friction is present because energy losses by the system.
Conclusion:
Therefore, the time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point.
Want to see more full solutions like this?
Chapter 14 Solutions
Physics for Scientists and Engineers, Volume 1
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Fundamentals Of Thermodynamics
Applications and Investigations in Earth Science (9th Edition)
Genetics: From Genes to Genomes
Fundamentals of Anatomy & Physiology (11th Edition)
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forward
- No chatgpt pls will upvotearrow_forward4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward
- 1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





