(a)
Interpretation:
If there is any advantage in processing the reaction at pressure above
Concept introduction:
For a single reaction system, the final moles of each of the present components can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as:
Where,
(a)
Answer to Problem 14.32P
There is no advantage in processing the reaction at pressure above
Explanation of Solution
Given information:
By the reaction of steam with “water gas”, hydrogen gas is produced. The reaction by which the steam is passed over a catalyst to convert
The equilibrium conditions given for this reaction is
For the given reaction to produce hydrogen gas, let the extent of the reaction be
The overall stoichiometric coefficient for this reaction is
The individual stoichiometric coefficients for all the components in this reaction are
The initial and final pressure of the system is taken as
Now, use equation (3) for the equilibrium constant of this reaction and simplify the expression as
Since the expression for the equilibrium constant for this reaction does not depend on the pressure of the system, carrying the reaction above
(b)
Interpretation:
The effect of increase in the equilibrium temperature for the given reaction on the conversion of
Concept introduction:
According to the Le’ Chatelier’s principle, if a reaction is subject to any change at its equilibrium, then the reaction tends to shift its equilibrium in the direction so as to undo the effect of that change on its equilibrium.
(b)
Answer to Problem 14.32P
The increase in the equilibrium temperature of the reaction does not increase the conversion of
Explanation of Solution
Given information:
By the reaction of steam with “water gas”, hydrogen gas is produced. The reaction by which the steam is passed over a catalyst to convert
The equilibrium conditions given for this reaction is
The standard heat of reaction and Gibb’s free energy for this reaction is
Since the reaction is exothermic, the heat released during the reaction acts as one of the products of the reaction.
Increasing the equilibrium temperature of the reaction increases the heat released of the system. So, according to the Le’ Chatelier’s principle, to undo the effect of the increase in the products, the reaction shifts to the left toward the reactants. Thus, there are more reactants present at the equilibrium and the conversion of
(c)
Interpretation:
The molar ratio of steam to water gas for the given reaction is to be determined.
Concept introduction:
For a single reaction system, the final moles of each of the present components can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as:
Where,
Gibb’s free energy in terms of equilibrium constant is written as:
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(c)
Answer to Problem 14.32P
The molar ratio of steam to water gas fed for the given reaction is
Explanation of Solution
Given information:
By the reaction of steam with “water gas”, hydrogen gas is produced. The reaction by which the steam is passed over a catalyst to convert
The equilibrium conditions given for this reaction is
After cooling the products to
From Table C.4 the standard heat of reaction and Gibb’s free energy for this reaction is:
From Table C.1 the coefficients for the heat capacity of the component gases are given as:
Substance | | | | |
| | | | |
| | | | |
| | | | |
| | | | |
Now, use equations set (6) to evaluate the values of
Now, use equation (5) along with the above calculated values to get the value of
Use this calculated value of
For the given reaction to produce hydrogen gas, let the extent of the reaction be
The overall stoichiometric coefficient for this reaction is,
The individual stoichiometric coefficients for all the components in this reaction are:
Using equation (1), write the expressions for final moles of all the components present in the products as gases. All of the unreacted
According to the given conditions on the product gases,
Let the mole of steam
Now, the moles of all the species in the products will be
Total moles of the products will be
Using equation (2) and substituting the value of
Now, use equation (3) and the calculated value of the equilibrium constant and
Therefore, the molar ratio of steam to water gas fed for the given reaction is
(d)
Interpretation:
The danger of formation of solid carbon by the given side reaction at equilibrium conditions is to be determined.
Concept introduction:
For a single reaction system, the final moles of each of the components present, can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as
Where,
Gibb’s free energy in terms of equilibrium constant is written as
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(d)
Answer to Problem 14.32P
There is no danger of formation of solid carbon by the given side reaction at equilibrium conditions.
Explanation of Solution
Given information:
By the reaction of steam with “water gas”, hydrogen gas is produced. The reaction by which the steam is passed over a catalyst to convert
The equilibrium conditions given for this reaction is
At this equilibrium condition, the side reaction taking place to form carbon is
From Table C.4 the standard heat of reaction and Gibb’s free energy for the formation of carbon is
From Table C.1 the coefficients for the heat capacity of the component gases are given as
Substance | | | | |
| | | | |
| | | | |
| | | | |
Now, use equations set (6) to evaluate the values of
Now, use equation (5) along with the above calculated values to get the value of
Use this calculated value of
This is the equilibrium constant for this reaction and if the actual value of this constant is greater than the equilibrium value then the reaction tries to shift to the left and reducing the formation of carbon.
Calculate the actual value of this constant as
For the given reaction to produce carbon, let the extent of the reaction be
The overall stoichiometric coefficient for this reaction is (for gases only)
The individual stoichiometric coefficients for all the gaseous components in this reaction are
Use equation (3) which is applicable only for gaseous species, such that,
From part (c), the actual value of the mole fraction of
Calculate the ratio of the actual constant as:
As the actual value of
Want to see more full solutions like this?
Chapter 14 Solutions
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
- 9.3. An ideal PD controller has the transfer function P Ke (TDs + 1) E An actual PD controller had the transfer function P = Ke E TDS +1 (TDIẞ)s +1 where ẞis a large constant in an industrial controller. If a unit-step change in error is introduced into a controller having the second transfer function, show that P(1) = Kc (1 + Ae˜¯BD) where A is a function of ẞwhich you are to determine. For ẞ=5 and K = 0.5, plot P(t) versus tl tp. As ẞ, show that the unit-step response approaches that for the ideal controller.arrow_forward9.1. A pneumatic PI temperature controller has an output pressure of 10 psig when the set point and process temperature coincide. The set point is suddenly increased by 10°F (i.e., a step change in error is introduced), and the following data are obtained: Time, s psig 0- 10 0+ 8 20 7 60 90 5 3.5 Determine the actual gain (psig per degree Fahrenheit) and the integral time.arrow_forward2. A unit-step change in error is introduced into a PID controller. If Ke TD = 0.5, plot the response of the controller P(t). = =10, 1, andarrow_forward
- A distribution of values is normal with a mean of 211 and a standard deviation of 50.4. Find the probability that a randomly selected value is between 59.8 and 155.6. P(59.8 X 155.6) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z- scores rounded to 3 decimal places are accepted.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Depreciation and TaxesCalculate the depreciation using a suitable method (e.g., straight-line, declining balance) andincorporate tax implications based on current tax laws applicable to chemical plants. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Revenue EstimationEstimate the annual revenue based on the production capacity, product selling price, and marketdemand. Groups should also consider potential market fluctuations. Use following attached Process Flow Diagram as reference for this question.arrow_forward
- Topic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.TASKS:1) Capital Cost EstimationProvide a detailed breakdown of the initial capital investment, including land, building,equipment, and installation costs. Include any assumptions made in the estimation. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Breakeven Year CalculationUsing the cash flow analysis, calculate the breakeven year when the cumulative cash inflowequals the initial investment. Groups should graphically represent the breakeven point. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Cash Flow AnalysisDevelop a projected cash flow statement for the first 10 years of plant operation, consideringall the costs and revenues. Include working capital, loans, and interest payments if applicable. Use following attached Process Flow Diagram as reference for this question.arrow_forward
- Topic: Production of propylene glycol from glycerol derived from palm oil.QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Operational Cost AnalysisCalculate the yearly operational costs, including raw materials, labor, utilities, maintenance,and other recurring expenses. Provide a clear explanation of how these costs are derived. Use following attached Process Flow Diagram as reference for this question.arrow_forwardChemical Engineering Questionarrow_forwardA steam boiler or steam generator is a device used to produce steam by transferring heat to water. In our case, the combustion chamber is fueled with propane (C3H8) at a flowrate of 50.0 mol/h in an excess air of 50%. Assume that both propane and air are fed at 25ºC and the combustion gases leave the chamber at 200ºC. Pressure can be assumed to be atmospheric.* Determine: 1. The heat obtained assuming complete combustion. Compare the results using elements or compounds 2. The steam flowrate that could be generated if the heat is directed to obtain superheated steam at 2 bar and 160ºC from saturated liquid water at this pressure solvearrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The